

October 30, 2023

Town of Millis Conservation Commission 900 Main Street Millis, MA 02054

RE: Notice of Intent Well #3 Water Treatment Plant PFAS Upgrades Birch Street, Millis

Dear Commission Members:

The Town of Millis Department of Public Works (DPW) is proposing to demolish existing water infrastructure and construct a new treatment / PFAS plant and associated infrastructure to Well #3 of Birch Street in Millis, MA. The Town of Millis well is currently offline due to the elevated PFAS levels, and requires additional treatment before it can be brought back online. The size and number of the filtration units will require a significant footprint. Adding on to the current building is not feasible, so DPW is proposing to construct a new building on the site.

A Wetland Resource Area protected under the Wetland Protection Act (WPA) (310 CMR 10.0) is located within 100 feet of the proposed limit of work. In accordance with the requirements of the WPA, please find enclosed copies of the Notice of Intent and reduced plan copies (11"x17") of the project site plans for your review.

Federal Emergency Management Agency (FEMA) floodplain mapping for the Town of Millis shows the limits of work within the 100-year floodplain; however proposed activities within this area propose to maintain or lower existing ground surface elevation.

We respectfully request the Commission to schedule a public hearing for the Conservation Commission meeting on November 13, 2023. Please contact the DPW or myself at the below number if you have any questions regarding this project. Thank you for your consideration on this matter.

Respectfully yours,

Tyler Bernier Kleinfelder

cc: James McKay, Millis Department of Public Works

Table of Contents

Notice of Intent Forms

WPA Form 3 – Notice of Intent NOI Wetland Fee Transmittal Form

Notice of Intent Figures

Figure 1 – Tax Parcel Map

Figure 2 – USGS Locus Map

- Figure 3 Aerial Map
- Figure 4 NHESP Map
- Figure 5 Flood Zone Map

Attachment A – NOI Narrative

Attachment B – Abutter Information

Attachment C – Wetland Data Forms

Attachment D – Project Plans

Attachment E – Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:

MassDEP File Number

Document Transaction Number Millis City/Town

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return

Note: Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

Project Location (Note: electronic filers will click on button to locate project site):				
Village Street		Millis	02054	
a. Street Address		b. City/Town	c. Zip Code	
Latitude and Langitus		42.1690	-71.3400	
Latitude and Longitud	ie:	d. Latitude	e. Longitude	
Map 28		41		
f. Assessors Map/Plat Num	hber	g. Parcel /Lot Numb	ber	
Applicant:				
Jim		McKay		
a. First Name		b. Last Name		
Town of Millis				
c. Organization				
900 Main St				
d. Street Address				
Millis		MA	02054	
e. City/Town		f. State	g. Zip Code	
508-376-7040				
h. Phone Number Property owner (requ	i. Fax Number ired if different from a		if more than one owner	
h. Phone Number			if more than one owner	
h. Phone Number Property owner (requ		applicant): 🗌 Check	if more than one owner	
h. Phone Number Property owner (requ a. First Name		applicant): 🗌 Check	if more than one owner	
h. Phone Number Property owner (requ a. First Name c. Organization		applicant): 🗌 Check	if more than one owner	
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address		applicant): Check		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town	ired if different from a	applicant): Check b. Last Name f. State		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number	ired if different from a	applicant): Check b. Last Name f. State		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any	ired if different from a	applicant): Check b. Last Name		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder c. Company	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder c. Company 1 Beacon Street	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia		
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia b. Last Name	g. Zip Code	
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address Boston	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia b. Last Name MA	g. Zip Code	
h. Phone Number Property owner (requ a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address	ired if different from a	applicant): Check b. Last Name f. State j. Email address Avenia b. Last Name	g. Zip Code	

vvetland Fee Transmittal I

\$0

a. Total Fee Paid

b. State Fee Paid

c. City/Town Fee Paid

4

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number
Document Transaction Number

Millis City/Town

A. General Information (continued)

6. General Project Description:

Implementation of PFAS groundwater treatment facility

7a. Project Type Checklist: (Limited Project Types see Section A. 7b.)

1.	Single Family Home	2. 🔲 Residential Subdivision
3.	Commercial/Industrial	4. Dock/Pier
5.	⊠ Utilities	6. 🗌 Coastal engineering Structure
7.	Agriculture (e.g., cranberries, forestry)	8. 🔲 Transportation

- 9. 🗌 Other
- 7b. Is any portion of the proposed activity eligible to be treated as a limited project (including Ecological Restoration Limited Project) subject to 310 CMR 10.24 (coastal) or 310 CMR 10.53 (inland)?

1. 🗌 Yes 🛛	If yes, describe which limited project applies to this project. (See 310 CMR
	10.24 and 10.53 for a complete list and description of limited project types)

2. Limited Project Type

If the proposed activity is eligible to be treated as an Ecological Restoration Limited Project (310 CMR10.24(8), 310 CMR 10.53(4)), complete and attach Appendix A: Ecological Restoration Limited Project Checklist and Signed Certification.

8. Property recorded at the Registry of Deeds for:

a. County	b. Certificate # (if registered land)
	Deed not found, plan 377 of 1973
c. Book	d. Page Number

B. Buffer Zone & Resource Area Impacts (temporary & permanent)

- 1. Buffer Zone Only Check if the project is located only in the Buffer Zone of a Bordering Vegetated Wetland, Inland Bank, or Coastal Resource Area.
- 2. Inland Resource Areas (see 310 CMR 10.54-10.58; if not applicable, go to Section B.3, Coastal Resource Areas).

Check all that apply below. Attach narrative and any supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Provided by MassDEP:

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number

Document Transaction Number Millis City/Town

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

	<u>Resour</u>	r <u>ce Area</u>	Size of Proposed Alteration	Proposed Replacement (if any)
For all projects	a. 🗌	Bank	1. linear feet	2. linear feet
affecting other Resource Areas,	b. 🔛	Bordering Vegetated Wetland	1. square feet	2. square feet
please attach a narrative explaining how the resource	c. 🗌	Land Under Waterbodies and	1. square feet	2. square feet
area was delineated.		Waterways	3. cubic yards dredged	
	<u>Resour</u>	<u>rce Area</u>	Size of Proposed Alteration	Proposed Replacement (if any)
	d. 🖂	Bordering Land	1661	N/A
		Subject to Flooding	1. square feet O	2. square feet
			3. cubic feet of flood storage lost	4. cubic feet replaced
	e. 🗌	Isolated Land Subject to Flooding	1. square feet	
			2. cubic feet of flood storage lost	3. cubic feet replaced
	f. 🗌	Riverfront Area	1. Name of Waterway (if available) - sr	pecify coastal or inland
	2.	Width of Riverfront Area	a (check one):	
		🔲 100 ft New agricu	ltural projects only	
		200 ft All other pr	ojects	
	3.	Total area of Riverfront A	rea on the site of the proposed proj	ect: square feet
	4.	Proposed alteration of the	e Riverfront Area:	Square reet
	a. 1	total square feet	b. square feet within 100 ft.	c. square feet between 100 ft. and 200 ft.
	5.	Has an alternatives analy	sis been done and is it attached to	this NOI?
	6.	Was the lot where the act	ivity is proposed created prior to Au	ıgust 1, 1996?
:	3. 🗌 Co	astal Resource Areas: (Se	ee 310 CMR 10.25-10.35)	
	Note:	for coastal riverfront area	s, please complete Section B.2.f. a	above.

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEP File Number
Document Transaction Number

ION ACLIM.G.L. C. 131, §40

Millis City/Town

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Check all that apply below. Attach narrative and supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Online Users: Include your document		<u>Resou</u>	<u>ce Area</u>	Size of Proposed	d Alteration	Proposed Replacement (if any)
transaction number		a. 🗌	Designated Port Areas	Indicate size ur	nder Land Under	r the Ocean, below
(provided on your receipt page) with all		b. 🗌	Land Under the Ocean	1. square feet		
supplementary information you submit to the				2. cubic yards dredg	ed	
Department.		c. 🗌	Barrier Beach	Indicate size und	ler Coastal Bead	ches and/or Coastal Dunes below
		d. 🗌	Coastal Beaches	1. square feet		2. cubic yards beach nourishment
		e. 🗌	Coastal Dunes	1. square feet		2. cubic yards dune nourishment
				Size of Proposed	d Alteration	Proposed Replacement (if any)
		f. 🗌	Coastal Banks	1. linear feet		
		g. 🗌	Rocky Intertidal Shores	1. square feet		
		h. 🗌	Salt Marshes	1. square feet		2. sq ft restoration, rehab., creation
		i. 🗌	Land Under Salt Ponds	1. square feet		
				2. cubic yards dredg	ed	
		j. 🗌	Land Containing Shellfish	1. square feet		
		k. 🗌	Fish Runs			ks, inland Bank, Land Under the er Waterbodies and Waterways,
		ı. 🗖	Land Subject to	1. cubic yards dredg	ed	
	4.	□ Re	Coastal Storm Flowage storation/Enhancement	1. square feet	cing a wetland i	resource area in addition to the
			footage that has been enter			ve, please enter the additional
		a. square	e feet of BVW		b. square feet of S	Salt Marsh
	5.	🗌 Pro	oject Involves Stream Cross	sings		
		a. numbe	er of new stream crossings		b. number of repla	cement stream crossings

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

lassDEP	File	Number	

Document Transaction Number Millis City/Town

C. Other Applicable Standards and Requirements

This is a proposal for an Ecological Restoration Limited Project. Skip Section C and complete Appendix A: Ecological Restoration Limited Project Checklists – Required Actions (310 CMR 10.11).

Streamlined Massachusetts Endangered Species Act/Wetlands Protection Act Review

 Is any portion of the proposed project located in Estimated Habitat of Rare Wildlife as indicated on the most recent Estimated Habitat Map of State-Listed Rare Wetland Wildlife published by the Natural Heritage and Endangered Species Program (NHESP)? To view habitat maps, see the Massachusetts Natural Heritage Atlas or go to http://maps.massgis.state.ma.us/PRI_EST_HAB/viewer.htm.

a. 🗌 Yes 🛛 No	If yes, include proof of mailing or hand delivery of NOI to:
	Natural Heritage and Endangered Species Program Division of Fisheries and Wildlife
GIS viewer checked 9/28/23	1 Rabbit Hill Road Westborough, MA 01581

If yes, the project is also subject to Massachusetts Endangered Species Act (MESA) review (321 CMR 10.18). To qualify for a streamlined, 30-day, MESA/Wetlands Protection Act review, please complete Section C.1.c, and include requested materials with this Notice of Intent (NOI); *OR* complete Section C.2.f, if applicable. *If MESA supplemental information is not included with the NOI, by completing Section 1 of this form, the NHESP will require a separate MESA filing which may take up to 90 days to review (unless noted exceptions in Section 2 apply, see below).*

- c. Submit Supplemental Information for Endangered Species Review*
 - 1. Dercentage/acreage of property to be altered:

(a) within wetland Resource Area

percentage/acreage

(b) outside Resource Area

percentage/acreage

- 2. C Assessor's Map or right-of-way plan of site
- 2. Project plans for entire project site, including wetland resource areas and areas outside of wetlands jurisdiction, showing existing and proposed conditions, existing and proposed tree/vegetation clearing line, and clearly demarcated limits of work **
 - (a) Project description (including description of impacts outside of wetland resource area & buffer zone)
 - (b) \square Photographs representative of the site

^{*} Some projects **not** in Estimated Habitat may be located in Priority Habitat, and require NHESP review (see <u>https://www.mass.gov/ma-endangered-species-act-mesa-regulatory-review</u>).

Priority Habitat includes habitat for state-listed plants and strictly upland species not protected by the Wetlands Protection Act.

^{**} MESA projects may not be segmented (321 CMR 10.16). The applicant must disclose full development plans even if such plans are not required as part of the Notice of Intent process.

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

MassDEP File Number Document Transaction Number Millis

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

•••		0	
С	itv/	Town	1

C. Other Applicable Standards and Requirements (cont'd)

(c) MESA filing fee (fee information available at <u>https://www.mass.gov/how-to/how-to-file-for-a-mesa-project-review</u>).

Make check payable to "Commonwealth of Massachusetts - NHESP" and *mail to NHESP* at above address

Projects altering 10 or more acres of land, also submit:

- (d) Vegetation cover type map of site
- (e) Project plans showing Priority & Estimated Habitat boundaries
- (f) OR Check One of the Following
- 1. Project is exempt from MESA review. Attach applicant letter indicating which MESA exemption applies. (See 321 CMR 10.14, <u>https://www.mass.gov/service-details/exemptions-from-review-for-projectsactivities-in-priority-habitat</u>; the NOI must still be sent to NHESP if the project is within estimated habitat pursuant to 310 CMR 10.37 and 10.59.)

2. 🗌	Separate MESA review engoing		
2. 🗀	Separate MESA review ongoing.	a. NHESP Tracking #	b. Date submitted to NHESP

- 3. Separate MESA review completed. Include copy of NHESP "no Take" determination or valid Conservation & Management Permit with approved plan.
- 3. For coastal projects only, is any portion of the proposed project located below the mean high water line or in a fish run?

a. \boxtimes Not applicable – project is in inland resource area only	b. 🗌 Yes	🛛 No
---	----------	------

If yes, include proof of mailing, hand delivery, or electronic delivery of NOI to either:

South Shore - Cohasset to Rhode Island border, and North Shore - Hull to New Hampshire border: the Cape & Islands:

Division of Marine Fisheries -Southeast Marine Fisheries Station Attn: Environmental Reviewer 836 South Rodney French Blvd. New Bedford, MA 02744 Email: <u>dmf.envreview-south@mass.gov</u> Division of Marine Fisheries -North Shore Office Attn: Environmental Reviewer 30 Emerson Avenue Gloucester, MA 01930 Email: <u>dmf.envreview-north@mass.gov</u>

Also if yes, the project may require a Chapter 91 license. For coastal towns in the Northeast Region, please contact MassDEP's Boston Office. For coastal towns in the Southeast Region, please contact MassDEP's Southeast Regional Office.

c. 🗌 Is this an aquaculture proje	ect?
-----------------------------------	------

a	Yes	\square	No
d.	res	M	INO

If yes, include a copy of the Division of Marine Fisheries Certification Letter (M.G.L. c. 130, § 57).

	Bu M	Provided by MassDEP: reau of Resource Protection - Wetlands PAFORM 3 – Notice of Intent ssachusetts Wetlands Protection Act M.G.L. c. 131, §40			
	C.	Other Applicable Standards and Requirements (cont'd)			
	4.	Is any portion of the proposed project within an Area of Critical Environmental Concern (ACEC)?			
Online Users: Include your document		a. Yes No If yes, provide name of ACEC (see instructions to WPA Form 3 or MassDEP Website for ACEC locations). Note: electronic filers click on Website.			
transaction number (provided on your receipt page) with all	5.	b. ACEC Is any portion of the proposed project within an area designated as an Outstanding Resource Water (ORW) as designated in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00?			
supplementary information you submit to the Department.	6.	 a. ☐ Yes ⊠ No Is any portion of the site subject to a Wetlands Restriction Order under the Inland Wetlands Restriction Act (M.G.L. c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L. c. 130, § 105)? a. ⊠ Yes □ No 			
	7.	Is this project subject to provisions of the MassDEP Stormwater Management Standards?			
		 a. X Yes. Attach a copy of the Stormwater Report as required by the Stormwater Management Standards per 310 CMR 10.05(6)(k)-(q) and check if: 1. Applying for Low Impact Development (LID) site design credits (as described in Stormwater Management Handbook Vol. 2, Chapter 3) 			
		2. A portion of the site constitutes redevelopment			
		3. Proprietary BMPs are included in the Stormwater Management System.			
		b. No. Check why the project is exempt:			
		1. Single-family house			
		2. Emergency road repair			
		3. Small Residential Subdivision (less than or equal to 4 single-family houses or less than or equal to 4 units in multi-family housing project) with no discharge to Critical Areas.			
	D.	Additional Information			
		This is a proposal for an Ecological Restoration Limited Project. Skip Section D and complete Appendix A: Ecological Restoration Notice of Intent – Minimum Required Documents (310 CMR 10.12).			

Applicants must include the following with this Notice of Intent (NOI). See instructions for details.

Online Users: Attach the document transaction number (provided on your receipt page) for any of the following information you submit to the Department.

- 1. USGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)
- 2. Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland [BVW] replication area or other mitigating measure) relative to the boundaries of each affected resource area.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Provided by MassDEP:

MassDEP File Number

Document Transaction Number Millis City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

D. Additional Information (cont'd)

- 3. Identify the method for BVW and other resource area boundary delineations (MassDEP BVW Field Data Form(s), Determination of Applicability, Order of Resource Area Delineation, etc.), and attach documentation of the methodology.
- 4. \square List the titles and dates for all plans and other materials submitted with this NOI.

Millis, Massachusetts Well 3 Water Treatment Facility			
a. Plan Title			
Kleinfelder	Gregory Avenia, P.E.		
b. Prepared By	c. Signed and Stamped by		
10/27/2023	1"=20'		
d. Final Revision Date e. Scale			

f. Additional Plan or Document Title

g. Date

- 5. If there is more than one property owner, please attach a list of these property owners not listed on this form.
- 6. Attach proof of mailing for Natural Heritage and Endangered Species Program, if needed.
- 7. Attach proof of mailing for Massachusetts Division of Marine Fisheries, if needed.
- 8. Attach NOI Wetland Fee Transmittal Form
- 9. \square Attach Stormwater Report, if needed.

E. Fees

1. Fee Exempt: No filing fee shall be assessed for projects of any city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:

2. Municipal Check Number	3. Check date		
4. State Check Number	5. Check date		
6. Payor name on check: First Name	7. Payor name on check: Last Name		

Provided by MassDEP: Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

MassDEF	P File Number	
Documer	t Transaction Numbe	r
Millis		
City/Town	1	

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

have g. Merkung		10/30/2023	
1. Signature of Applicant		2. Date	
3. Signature of Property Owner	(if different)	4. Date	
1/	Gregory Avenia, PE (Kleinfelder)	10/30/2023	
5. Signature of Representative (if any)	6. Date	

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a copy of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other:

If the applicant has checked the "yes" box in any part of Section C, Item 3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Important: When	
filling out forms	
on the computer,	1
use only the tab	••
key to move your	
cursor - do not	
use the return	
key.	
,	

A. Applicant Information

1. Location of Project:				
	Village St		Millis	
	a. Street Address		b. City/Town	
	c. Check number		d. Fee amount	
2.	Applicant Mailing Ad	dress:		
	Jim		McKay	
	a. First Name		b. Last Name	
	Town of Millis			
	c. Organization			
	900 Main Street			
	d. Mailing Address			
	Millis		MA	02054
	e. City/Town		f. State	g. Zip Code
	508-376-7040			
	h. Phone Number	i. Fax Number	j. Email Address	
3.	Property Owner (if d	ifferent):		
	a. First Name		b. Last Name	
	c. Organization			
	d. Mailing Address			
	e. City/Town		f. State	g. Zip Code
	h. Phone Number	i. Fax Number	j. Email Address	

To calculate filing fees, refer to the category fee list and examples in the instructions for filling out WPA Form 3 (Notice of Intent).

B. Fees

Fee should be calculated using the following process & worksheet. *Please see Instructions before filling out worksheet.*

Step 1/Type of Activity: Describe each type of activity that will occur in wetland resource area and buffer zone.

Step 2/Number of Activities: Identify the number of each type of activity.

Step 3/Individual Activity Fee: Identify each activity fee from the six project categories listed in the instructions.

Step 4/Subtotal Activity Fee: Multiply the number of activities (identified in Step 2) times the fee per category (identified in Step 3) to reach a subtotal fee amount. Note: If any of these activities are in a Riverfront Area in addition to another Resource Area or the Buffer Zone, the fee per activity should be multiplied by 1.5 and then added to the subtotal amount.

Step 5/Total Project Fee: Determine the total project fee by adding the subtotal amounts from Step 4.

Step 6/Fee Payments: To calculate the state share of the fee, divide the total fee in half and subtract \$12.50. To calculate the city/town share of the fee, divide the total fee in half and add \$12.50.

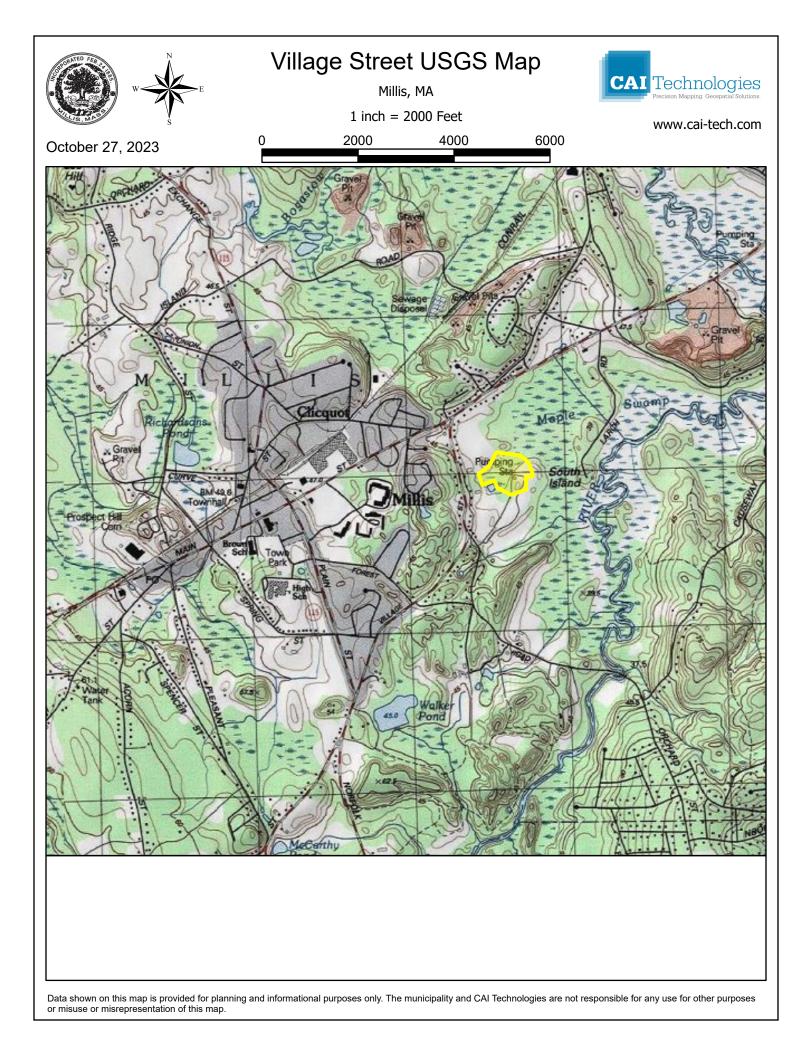
Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form

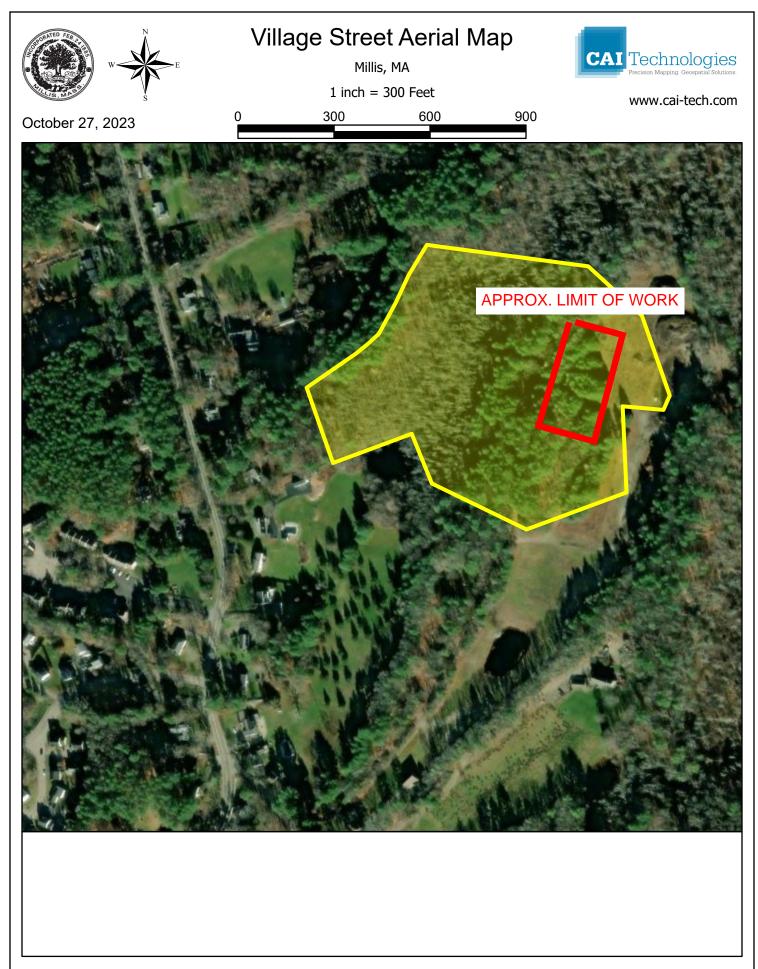
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Fees (continued)

Step 1/Type of Activity	Step 2/Number of Activities	Step 3/Individual Activity Fee	Step 4/Subtotal Activity Fee
No fee, Town Project	1	0	0
	Step 5/To	tal Project Fee:	
	Step 6/F	ee Payments:	
	Total F	Project Fee:	\$0 a. Total Fee from Step 5
	State share	of filing Fee:	\$0 b. 1/2 Total Fee less \$ 12.50
	City/Town share	of filling Fee:	\$0 c. 1/2 Total Fee plus \$12.50

C. Submittal Requirements


a.) Complete pages 1 and 2 and send with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts.


Department of Environmental Protection Box 4062 Boston, MA 02211

b.) **To the Conservation Commission:** Send the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and the city/town fee payment.

To MassDEP Regional Office (see Instructions): Send a copy of the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and a **copy** of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

ATTACHMENT A NOI Narrative

<u>Attachment A – Notice of Intent Narrative</u>

This Notice of Intent (NOI) is filed pursuant to the Massachusetts Wetlands Protection Act (WPA) (MGL Chapter 131, Section 40) and its implementing regulations (310 CMR 10.00). This narrative presents wetland resource areas associated with the Project area, a description of the proposed work, proposed mitigation measures, and how the Project meets the performance standards of the WPA regulations. Refer to the accompanying Project plans included as Attachment D for a plan layout and details of the Project components.

Introduction

The Town of Millis (Millis) operates a water system with six overburden groundwater wells and four treatment plants, serving approximately 8,600 residential customers. The Massachusetts Department of Environmental Protection (MassDEP) recently adopted a drinking water standard limiting six per- and polyfluoroalkyl substances (PFAS) levels to no more than 20 nanograms per liter (ng/L), and as part of the new drinking water regulations, all public water systems are required to sample for PFAS levels.

Since the discovery of PFAS in Millis' water supply, the Town has worked to improve water quality through the design and construction of the PFAS treatment upgrades at the D'Angelis Water Treatment Facility (WTF). However, the remaining Wells 3 through 6 also have PFAS detections for compounds subject to regulations from Massachusetts Department of Environmental Protection (DEP) and some of which may also be subject to the proposed regulations by United States Environmental Protection Agency (EPA). While the new D'Angelis WTF will be capable of meeting average daily demands on its own, the Town must install additional PFAS treatment to meet peak demands.

The Town of Millis Department of Public Works (DPW) has conducted pilot testing and a thorough site investigation to obtain the most effective treatment for removing PFAS from drinking water with the least environmental impact. The DPW proposes to construct a new building housing granular activated carbon (GAC) filters, chemical feed equipment, and associated infrastructure at the existing Well 3 site for treatment of public drinking water.

Portions of the land near the Project area contain Bordering Vegetated Wetlands (BVW), a resource area subject to the jurisdiction of the WPA. Proposed work for the Project will occur only in the 100-foot Buffer Zone of the BVW. The Project meets or exceeds all performance standards for Buffer Zone under the WPA. Portions of the Project area are also shown on the Flood Insurance Rate Map (FIRM) as located within Zone AE (100-year floodplain, regulated as Bordering Land Subject to Flooding [BLSF]). However, within the Project area, base flood elevation (BFE) is mapped as 123 feet NAVD88 and recently the DPW obtained survey information collect by a Professional Land Surveyor (PLS) registered in the Commonwealth of Massachusetts that shows a small portion of the limit of disturbance for this Project is located within BFE and/or inside of regulated floodplain areas. More information on the position of the project footprint relative to Zone AE is provided below.

Site Description

The Project area is located on one parcel of land off Birch Street in Millis, Massachusetts. The Project area currently contains wooded land and existing water system infrastructure. Wooded area borders the site to the south, the gravel driveway and wetland to the west, existing Well 3 infrastructure to the north, and a grassed field to the east past a loop in the gravel driveway. Refer to Figure 1 for a Tax Parcel map of the Project area, and Figures 2 and 3 for a USGS map and aerial map of the Project area.

According to the most recently available data provided by the Massachusetts Natural Heritage and Endangered Species Program (NHESP), no Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife have been mapped in the vicinity of the Project area. No certified or potential vernal pools have been mapped in the Project area (Figure 4). The Project Area is not located within or near an Area of

Critical Environmental Concern (ACEC). According to the Massachusetts Department of Environmental Protection (DEP), the Project area is not located within an Outstanding Resource Water area, but it designated as a Zone I and Zone II Wellhead Protection Area. According to the Natural Resources Conservation Service (NRCS) soil survey, soils in the Project area are mapped as Swansea and Hinkley.

Wetland Resource Areas

Wetland Resource areas in or near the Project Area were identified and delineated by environmental scientists from Basbanes Wetland Consulting on July 19, 2023, in accordance with methods developed by the DEP and U.S. Army Corps of Engineers. Resource areas are shown on the accompanying Project plans and wetland data forms are included in Attachment C. One BVW was delineated in the Project Area, as was Land Subject to Flooding. BVW is defined under the WPA Regulations (310 CMR 10.00) as: "freshwater wetlands that border on creeks, rivers, streams, ponds, and lakes." The boundary of a BVW is determined by the presence of 50 percent or more of wetland indicator plants and saturated or inundated conditions. Bordering Land Subject to Flooding is defined under the WPA Regulations (310 CMR 10.00) as: "an area which floods from a rise in a bordering waterway or water body. Such areas are likely to be significant to flood control and storm damage prevention."

The delineated wetland is located west of the Project Area. Dominant vegetation within the wetland includes beech, maple, oak, pine, buckthorn, highbush and lowbush blueberry, Canada mayflower, fern cinnamon, fern wood, partridgeberry, sphagnum moss, starflower, and poison ivy. The wetland was delineated with flags 1A through 23A (See Project plans). The wetland is regulated as BVW under the WPA.

A 100-foot Buffer Zone extends horizontally outward from the BVW boundary described above, as defined in 310 CMR 10.02(2)(b). The Buffer Zone is not considered a resource area under the WPA, but areas within the Buffer Zone are under the jurisdiction of the issuing authority. Millis has an additional wetlands protection bylaw preventing structures within the inner 50-foot Buffer Zone from the edge of a wetland resource. Within the Project area, the Buffer Zone of the wetland contains and existing gravel drive, paved parking, existing infrastructure, and proposed utilities.

The FIRM for the area indicates a portion of the Project is within as within Zone AE, regulated as BLSF, with an elevation of 123 feet NAVD88. A civil survey conducted within the Project area in September 2022 and July 2023 shows that all Project impacts occur outside of this area, except for demolition activities associated with the existing chemical feed building that proposed to maintain or lower existing grades. Proposed demolition activities are encompass 1,661 square feet of Bordering Land Subject to Flooding. The project is subject to regulation under the WPA.

Proposed Activities

The project includes installation of four (4) 10,000 lb. GAC filters at the Well 3 site, which will require additional building footprint to accommodate the infrastructure. The DPW proposes to construct a new building on the site, adjacent to existing Well 3 infrastructure. A small existing chemical treatment building on the parcel will be demolished and the new building housing the PFAS treatment system and chemicals will be built nearby, on land outside the 100-year floodplain. The existing gravel access road leading to the new building will be reconstructed to provide safe access for vehicles and maintenance personnel. The proposed building footprint is located outside the 100-foot Buffer Zone of a BVW, however portions of construction activities are located within the Millis 100-foot and 50-foot Buffer Zones.

Activities Within Buffer Zone

Project work within the Buffer Zone will include demolition of an existing water infrastructure building, as well as reconstruction of existing gravel driveway areas, installation of new paved driveways, and installation of a new building with associated parking and utilities. All work will take place outside of the

BVW, but demolition of the chemical feed building, restoration of the gravel access drive, and installing pavement, will be within the 100-foot Buffer Zone as shown on the attached plans in Attachment D. Within the area of disturbance associated with the demolition of the chemical feed building, approximately 2,140 square feet of wetland buffer restoration is proposed in a previously developed location.

Sedimentation barriers will be placed around the perimeter of the work area to prevent migration of excavated material from entering the BVW.

Mitigation

The new building has been sited to reduce impacts to wetland resources to the greatest extent practicable by locating it outside of the buffer zone and restoring 2,140 square feet of buffer zone that was previously developed. An erosion and sedimentation control program will be implemented to minimize temporary impacts to wetland resource areas during the construction phase of the project. The program incorporates Best Management Practices (BMPs) specified in guidelines developed by the DEP and the U.S. Environmental Protection Agency (EPA).

Proper implementation of the erosion and sedimentation control program will:

- > Minimize exposed soil areas through sequencing and temporary stabilization;
- > Place structures to manage stormwater runoff and erosion; and
- > Establish a permanent vegetative cover or other forms of stabilization as soon as practicable.

Non-Structural Practices

Non-structural practices to be used during construction include temporary stabilization, temporary seeding, permanent seeding, pavement sweeping, and dust control. These practices will be initiated as soon as practicable in appropriate areas within the Project Area.

Temporary Stabilization

Any areas of exposed soil or stockpiles that will remain inactive for more than 14 days will be surrounded by erosion control devices and covered with polyurethane sheeting.

Temporary Seeding

If conditions allow, a temporary vegetative cover will be established on areas of exposed soils (including stockpiles) that remain unstabilized for a period of more than 60 days. The seeded surfaces will be covered with a layer of straw mulch or bonded fiber matrix as described above. The seed mix shall include a blend of rapid germinating grasses that are indigenous to eastern Massachusetts.

Permanent Seeding

Upon completion of final grading, any areas not covered by pavement, other forms of stabilization, or other methods of landscaping will be seeded with a native seed mix. The mix will be applied at a rate specified by the manufacturer and will be covered with mulch or bonded fiber matrix as described above.

Pavement Sweeping

The interior roads (once paved) and the portion of the street that fronts the Project Area shall be swept as needed during construction. The sweeping program will remove sediment and other contaminants directly from paved surfaces before their release into stormwater runoff. Pavement sweeping has been demonstrated to be an effective initial treatment for reducing pollutant loading into stormwater. A street sweeper shall be kept at the site or at a nearby location to facilitate this practice. Once construction has been completed, sweeping at the Project Area will occur as required under the Operation and Maintenance Plan.

Dust Control

The erosion and sediment control program includes provisions to minimize the generation of dust during dry and windy conditions. When necessary, larger areas of exposed soil will be wetted to prevent wind borne transport of fine-grained sediment. Enough water shall be applied to wet the upper 0.5 inches of soil. The water will be applied as a fine spray to prevent erosion. A water truck will be kept on the property (or at a nearby location) to facilitate this practice.

Structural Practices

Structural erosion and sedimentation controls to be used on the Project Area include barriers, catch basin inlet protection, and dewatering filters.

Erosion Control Barriers

Prior to any ground disturbance, an approved erosion control barrier will be installed at the downgradient limit of work. As construction progresses, additional barriers will be installed around the base of stockpiles and other erosion prone areas. The barriers will be entrenched into the substrate to prevent underflow.

If sediment has accumulated to a depth which impairs proper functioning of the barrier, it will be removed by hand or by machinery operating upslope of the barriers. This material will be either reused in the Project Area or disposed of at a suitable offsite location. Any damaged sections of the barrier will be repaired or replaced immediately upon discovery.

Dewatering Filters

If necessary, sediment laden water that collects in trenches or excavated areas will be pumped into straw bale basins or filter bags. The basins will consist of a ring of staked straw bales overlain by non-woven geotextile filter fabric and crushed stone. Discharge water will be pumped into the basin and allowed to drain through the fabric onto relatively flat stabilized surfaces. Dewatering filter bags may be used in place of straw bale basins. The bags will be placed on relatively flat terrain, free of brush and stumps, to avoid ruptures and punctures. A maximum of one six-inch discharge hose will be allowed per filter bag. To help prevent punctures, geotextile fabric will be placed beneath the filter bag when used in wooded locations. Unattended filter bags will be encircled with a straw bale and silt fence barrier.

All dewatering structures will be placed as far away from wetland resources as possible. Filter bags used during construction will be bundled and removed for proper disposal.

Stormwater Management

Runoff generated from impervious surfaces will be collected and managed in accordance with the DEP Stormwater policies in significant improvement to existing conditions. The proposed Project will improve existing conditions within the Project Area by constructing a stormwater management system that includes measures to provide groundwater recharge, attenuate peak flows and provide water quality treatment. Full details on the system (including supporting calculations) are included in the accompanying Stormwater Management Report (Attachment E).

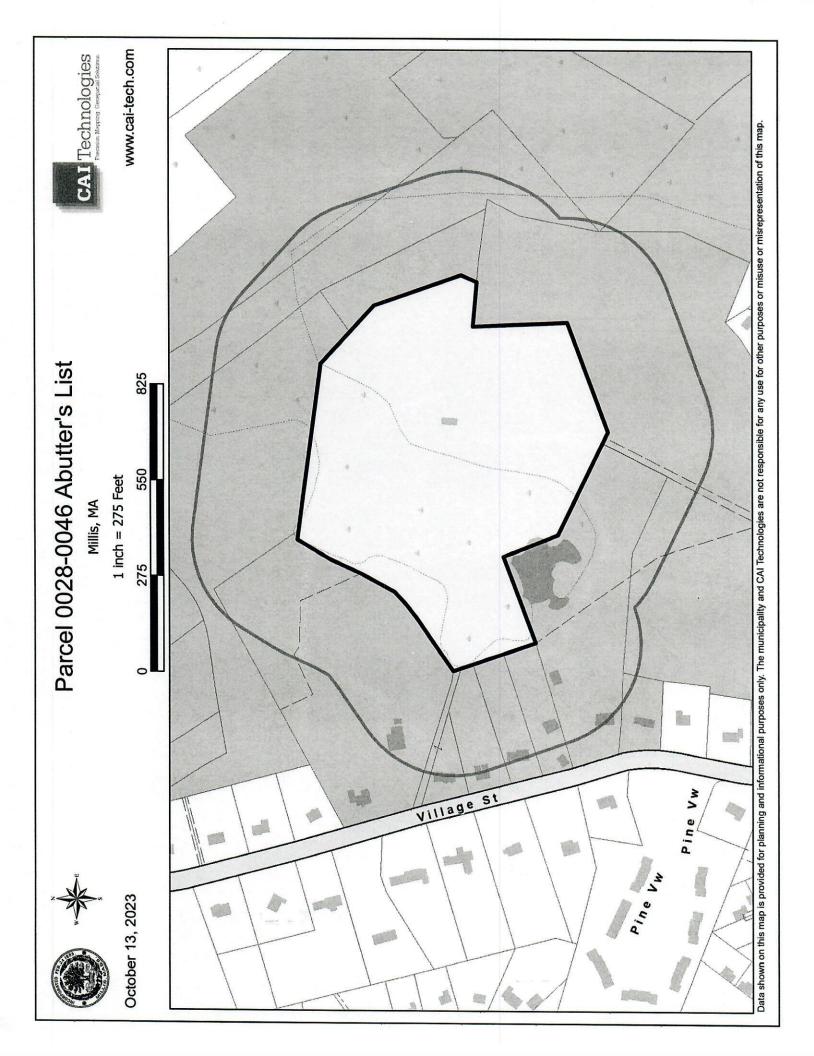
Compliance with the 10 stormwater management standards cited in Section 310 CMR 10.05(6)(k) of the WPA Regulations is evaluated in the Regulatory Compliance section of the Stormwater Management Report.

Regulatory Compliance

As demonstrated below, the Project work fully complies with and exceeds applicable performance standards contained in the WPA for work in the 100-foot Buffer Zone to BVW and the Bordering Land Subject to Flooding. Compliance with each of the applicable performance standards is described in more detail below.

The Buffer Zone is not a resource area and, therefore, work within a Buffer Zone is not governed by specific regulatory performance standards. In general, work within a Buffer Zone is permissible when said work

has been designed, or can be conditioned, such that there will be no impact on the downgradient wetland resource area(s) being buffered. As stated in 310 CMR 10.53(1) of the WPA Regulations:


For work in Buffer Zone subject to review under 310 CMR 10.02(2)(b)3., the Issuing Authority shall impose conditions to protect the interests of the Act identified for the adjacent Resource Area... The issuing authority may consider the characteristics of the Buffer Zone, such as the presence of steep slopes, that may increase the potential for adverse impacts on Resource Areas. Conditions may include limitations on the scope and location of work in the Buffer Zone as necessary to avoid alteration of Resource Areas. The Issuing Authority may require erosion and sedimentation controls during construction, a clear limit of work, and the preservation of natural vegetation adjacent to the Resource Area and/or other measures commensurate with the scope and location of work with the Buffer Zone to protect the interests of the Act.

The Project has been designed to address these considerations. Measures have been incorporated into the Project design to ensure that work will be done in a manner that prevents impacts to downgradient wetland resources. A clear limit of work will be identified, and erosion and sedimentation control areas will be installed in the Project Area. Temporary disturbance in vegetated areas of Buffer Zone will be restored in place and seeded with a native seed mix.

The Applicant respectfully requests that the Millis Conservation Commission find these measures adequately protective of the interests identified in the WPA and issue an Order of Conditions approving the work described in this NOI and shown on the accompanying plans.

ATTACHMENT B Abutter Information

October 1	Illis, MA stober 13, 2023	C	CERTIFIED COPY by the TOWN OF MILLIS
Subject Property	y:	A	ssessors Office Liz Road
Parcel Number: CAMA Number: Property Address	0028-0046-0000 0028-0046-0000 : VILLAGE ST	Mailing Address	101,010
Pricemy Notreas	MARY ST TRACT 619		
Abutters:			
Parcel Number: CAMA Number: Property Address:		Mailing Address:	U S ARMY CORPS OF ENGINEERS REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569
Parcel Number: CAMA Number: Property Address:	0027-0052-0000 0027-0052-000B 30 LARCH RD	Mailing Address:	FIN FUR & FEATHER CLUB INC P O BOX 272 MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	0028-0014-0000 0028-0014-0000 34 VILLAGE ST	Mailing Address:	LYDIA GEORGE CHRIS TSINIDIS 34 VILLAGE ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:		Mailing Address:	KERRI A BARRETT THOMAS J BARRETT SR. 30 VILLAGE ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	0028-0015-0000 0028-0015-000H 30 VILLAGE ST	Mailing Address:	KERRI A BARRETT THOMAS J BARRETT SR. 30 VILLAGE ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	******	Mailing Address:	HAMPTON LYNDA L & SCOTT D 36 VILLAGE ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	0028-0019-0000 0028-0019-0000 40 VILLAGE ST	Mailing Address:	NGUYEN BICH-VAN 40 VILLAGE ST MILLIS, MA 02054
CAMA Number: Property Address:	0028-0020-0000 0028-0020-0000 42 VILLAGE ST		ANTHONY DELGROSSO LATOYA THOMPSON 42 VILLAGE ST MILLIS, MA 02054
CAMA Number: Property Address:	0025-0088-0000 0028-0021-0000 MAIN ST TRACT 417	Mailing Address:	U S ARMY CORPS OF ENGINEERS REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569
AMA Number:	0028-0022-0000 0028-0022-0000 MAIN ST TRACT 412	Mailing Address:	U S ARMY CORPS OF ENGINEERS REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

CAL Technologies

10/13/2023

Milli	0 foot Abutters Lis s, MA ber 13, 2023	•	
Parcel Number: CAMA Number: Property Address:	0028-0023-0000 0028-0023-0000 VILLAGE ST TR 428	Mailing Address:	U S ARMY CORPS OF ENGINEERS REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569
Parcel Number: CAMA Number: Property Address:	0028-0024-0000 0028-0024-0000 MAIN ST TRACT 412	Mailing Address:	U S ARMY CORPS OF ENGINEERS REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569
Parcel Number: CAMA Number: Property Address:	0028-0025-0000 0028-0025-0000 44 VILLAGE ST	Mailing Address:	Contact Town For Info
Parcel Number: CAMA Number: Property Address:	0028-0039-0000 0028-0039-0000 BIRCH ST	Mailing Address:	WHELAN KENNETH J 27 BIRCH ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	0028-0041-0000 0028-0041-0000 68 VILLAGE ST	Mailing Address:	WHELAN BRENDA J TRUSTEE WHELAN BRENDA J REALTY TRUST 68 VILLAGE ST MILLIS, MA 02054
Parcel Number: CAMA Number: Property Address:	0028-0047-0000 0028-0047-0000 46 VILLAGE ST	Mailing Address:	MOGAN JOHN J JR & MARCIA A C/O MOGAN JOHN J JR 46 VILLAGE ST MILLIS, MA 02054
Parad Noncep CAMP Parents	e 1980 de l'actorem Paul francés de las	a Sar	

10/13/2023

5

Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this report.

Abutters List Report - Millis, MA

Page 2 of 2

ATTACHMENT C Wetland Data Forms

BASBANES WETLAND CONSULTING

39 Hardy St. Dunstable, MA 01827

Delineation Report 21167-1A Millis Well 3 Village St, Millis, MA

July 20 2023

The following is a report on the delineation of the wetland resource areas at the Millis Well 3 off Village St, Millis, MA. The delineation was done on July 19 2923. The jurisdictional wetland resource area present on site may include: 310 CMR 10.55 Bordering Vegetated Wetland and 310 CMR 10.57 Land Subject to Flooding.

Delineation Method

A wetland delineation is done by visual survey of topography, evidence of hydrology, and identification of plant species. A determination is made for each plant species as to their indicator status as referenced in the "National List of Plant Species that Occur in Wetlands", published by the Fish and Wildlife Service. The boundary of the wetland is then determined to be where 50% or more of the vegetation community consists of wetland indicator species with a status of FAC or wetter. Where there is a dominance of wetland plants species, evidence of hydrology is looked for, i.e. water stained leaves, drainage patterns, morphological adaptations, and hydric soils. Typically, hydric soils are determined by digging or augering a pit 20" deep and observing the horizons for color and features. Determinations are made referencing "Field Indicators for Identifying Hydric Soils in New England" and color matched to the Munsell Soil Color Charts.

Flagging Series

The wetland resource area is delineated by the flagging series 1A-23A. The wetland delineated is a bordering vegetated wetland that is part of an extensive wetland system associated with the Charles River. The Charles River is well over 1500 I.f. from the subject property. The wetland boundary is fairly well defined though the area is relatively flat. The transition of wetland plants of hydric to upland plants as well as non-hydric soils to hydric soils is narrow.

Vegetation

The vegetation along the delineated area consists of the following dominant species:

Beech, Fagus grand folia	FACU
Maple, Red Acer rubrum	FAC
Maple, Sugar Acer saccharum	FACU
Oak, Red <i>Quercus rubra</i>	FACU
Pine, White <i>Pinus strobus</i>	FACU
Buckthorn, European Rhamnus frangula	FAC
Highbush Blueberry Vaccinium corymbosum	FACW
Lowbush Blueberry Vaccinium angustifolium	FACU
Canada Mayflower Maianthemum canadense	FACU
Fern Cinnamon Osmunda cinnamomea	FACW
Fern Wood Dryopteris spinulosa	
Partridgeberry Mitchella repens	FACU
Sphagnum moss <i>Sphagnum spp.</i>	OBL
Starflower Trientalis borealis	FAC
Poison Ivy Toxicodendron radicans	FAC

Soils

As referenced to the NRCS Soil Survey, the soils on the subject property are Swansea in the wetland and Hinckley in the upland area. Swansea soils consist of nearly level, deep (5+ ft.), very poorly drained organic soils in depressions and low flat areas of uplands and glacial outwash plains and terraces. Hinckley soils consist of deep, excessively drained soils on terraces, outwash plains, deltas, kames and eskers.

The typical soil profiles observed were:

<u>SP upla</u>	and	<u>SP hyc</u>	<u>lric</u>
0	<1"	0	<1"
А	0" – 8" 10YR 2/2	А	0" – 10" 10YR 2/1
В	8"-18" 10YR 4/4	В	10"-18" 10YR 4/2 redox

Indicators of hydrology

Along with the presence of hydric soil conditions other indicators of hydrology were observed. Those indicators include: water-stained leaves, areas void of vegetation, sphagnum moss.

Rare Species

Under MESA and 310 CMR 10:59 Estimated Habitats of Rare Wildlife, any work proposed, regardless of wetlands, within an Estimated or Priority habitat shall be reviewed by the NHESP as well as the Conservation Commission. The site is not located within an Estimated or Priority Habitat

Vernal Pools

There are no certified vernal pools on the property per the most recently NHESP map.

FEMA

As referenced to the FEMA flood data maps, a portion of the site is located within a regulatory flood zone AE.

If you have any questions please do not hesitate to contact me. Thank you.

Sincerely,

Level D. Badsanes

Leah D. Basbanes, M.A. Wetland Consultant/Biologist

The wetland resource areas were delineated/reviewed in the keeping with the Massachusetts Wetland Protection Act and were done so to the best of our abilities. Considering all the variables (seasonal growth form of vegetation, soils conditions, topography, weather, etc.) involved in such an effort, please be advised that despite the best effort, no wetland delineation is considered definitive until verified and approved by the final issuing authority.

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3	City/Town: _ ^{Millis}	Sampling Date: _ ^{July 19 2023}
Applicant/Owner: Town of Millis	Sampling	Point or Zone: Non wet SP1
Investigator(s): Leah Basbanes		Longitude: 42.16812, -71.34051
Soil Map Unit Name: <u>Hinckley</u>	NWI or DI	EP Classification: WS1
Are climatic/hydrologic conditions on the	e site typical for this time of year? Yes	✓ No (If no, explain in Remarks)
Are Vegetation, Soil, or	Hydrology significantly disturbed?	? (If yes, explain in Remarks)
	Hydrology naturally problematic?	
SUMMARY OF FINDINGS – Attach site m	ap and photograph log showing sampling	g locations, transects, etc.
Wetland vegetation criterion met?	Yes No 🖌 Is the Samı	
Hydric Soils criterion met?	Yes No 🖌 within a W	etland?
Wetlands hydrology present?	YesNo 🗹	
Remarks, Photo Details, Flagging, etc.:		
HYDROLOGY		
Field Observations:		
Surface Water Present?	Yes No 🖌 De	oth (inches)
Water Table Present?	Yes No 🖌 De	pth (inches)
Saturation Present (including capillary fi	ringe)? Yes No 🖌 De	oth (inches)
Wetland Hydrology Indicators		
Reliable Indicators of Wetlands	Indicators that can be Reliable with	Indicators of the Influence of Water
Hydrology	Proper Interpretation	
Water-stained leaves	Hydrological records	Direct observation of inundation
Evidence of aquatic fauna	Free water in a soil test hole	Drainage patterns
Iron deposits	Saturated soil	Drift lines
Algal mats or crusts	Water marks	Scoured areas
Oxidized rhizospheres/pore	Moss trim lines	Sediment deposits
Thin muck surfaces	Presence of reduced iron	Surface soil cracks
Plants with air-filled tissue	Woody plants with adventitious	Sparsely vegetated concave
(aerenchyma)	roots	surface
Plants with polymorphic leaves	Trees with shallow root systems	Microtopographic relief
Plants with floating leaves	Woody plants with enlarged	Geographic position (depression,
Hydrogen sulfide odor	lenticels	toe of slope, fringing lowland
Remarks (describe recorded data from s	tream gauge, monitoring well, aerial pho	tos, previous inspections, if available):

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

|--|

Tree Stratum Plot siz	ze_30'				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. Red Oak	Quercus rubra	FACU	30.0	Yes	No
2. White Pine	Pinus strobus	FACU	30.0	Yes	No
3. Red Maple	Acer rubrum	FAC	20.0	Yes	Yes
4. sugar maple	Acer saccharum	FACU	10.0	No	No
5.					
6.					
7.					
8.					
9.					
	<u>_</u>	90.0 = 1	otal Cover		
Shrub/Sapling Stratum Plot size	ze ^{15'}				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name	otatas		() () ()	(yes/no)
1. European Buckthorn	Rhamnus frangula	FAC	40.0	Yes	Yes
2. Lowbush Blueberry	Vaccinium angustifolia	FACU	30.0	Yes	No
3.	5				
4.					
5.					
6.					
7.					
8.					
9.					
	7	70.0 = 1	otal Cover		
Use the Characterist	=				
Herb Stratum Plot si	ze_ <u>></u>				
		Indicator	Absolute		Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. Starflower	Trientalis borealis	FAC	10.0	No	No
2. Partridgeberry	Mitchella repens	FACU	20.0	Yes	No
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					
		<u>30.0</u> = 1	otal Cover		

VEGETATION – continued.

Woody Vine Stratum	Plot size				
		Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?
Common name	Scientific name				(yes/no)
1.					
2.					
3.					
4.					
		<u>0.0</u> = T	otal Cover		

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No					
Dominance Test:	Number of	Number of dominant speci	es that are	Do wetland indicator plants make up	
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?	
	6	2		YesNo	
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result	
	OBL species		X 1	= 0.00	
	FACW species	X 2		= 0.00	
	FAC species		X 3	= 0.00	
	FACU species	X 4		= 0.00	
	UPL species	X 5		= 0.00	
	Column Totals	(A) 0		(B) 0	
Prevalence Index				Is the Prevalence Index \leq 3.0?	
		0.00		YesNo	
Wetland vegetation criterion met? Yes No 🖌					

Definitions of Vegetation Strata

Tree -Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of heightShrub / Sapling -Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tallHerb -All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tallWoody vines -All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges						
Range	Midpoint					
1-5 %	3.0 %					
6-15 %	10.5 %					
15-25 %	20.5 %					
26-50 %	38.0 %					
51-75 %	63.0 %					
76-95 %	85.5 %					
96-100 %	98.0 %					

			1						(
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)									
Depth (in all a s)	Matrix			2					
(inches) 0-6	Color (moist) 10yr 2/2	%	Color (moist)	%	Type ¹	Locatio	on-	Texture	Remarks
6-8	10yr 3/3							sandy loam	
8-18	10yr 4/4							Sandy Ioann	
0.10	.091 111								
				-					
¹ Type: C=Con(centration, D=Dep	letion R	 M=Reduced Matr	ix MS=M	 Iasked San	d Grains	² 1 0	cation: PI =Por	Lining, M=Matrix
	ndicators (Check						1		oblematic Hydric Soils
Histosol	(A1)		Poly	value Be	low Surfa	ce (S8)		_2 cm Muck	(A10)
Histic Ep	ipedon (A2)		Thin	Dark Su	rface (S9)			5 cm Mucky	Peat or Peat (S3)
Black Hi	stic (A3)		Loar	ny Gleye	d Matrix ((F2)		Iron-Manga	nese Masses (F12)
Hydroge	en Sulfide (A4)		Dep	eted Ma	atrix (F3)			Mesic Spod	ic (A17)
Stratifie	Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21)							Material (F21)	
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22)									
Thick Dark Surface (A12)									
Sandy N	lucky Mineral (S	1)							
Sandy G	leyed Matrix (S4)						-	
Sandy Redox (S5) Other (Include Explanation in Remarks)									
Stripped Matrix (S6) Remarks)									
Dark Surface (S7)									
Restrictive Layer (if observed) Type: Depth (inches):									
Remarks:									
Hydric Soils	criterion met?		Yes	No	\checkmark				

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3	City/Town:	Sampling Date: July 19 2023
Applicant/Owner: <u>Town of Millis</u>	Sampling	Point or Zone: <u>wet SP2</u>
Investigator(s): Leah Basbanes	Latitude /	Longitude: <u>42.16809</u> , -71.34063
Soil Map Unit Name: <u>Swansea</u>	NWI or DI	EP Classification: WS1
Are climatic/hydrologic conditions on the	site typical for this time of year? Yes	✓ No (If no, explain in Remarks)
Are Vegetation, Soil, or	Hydrology significantly disturbed?	(If yes, explain in Remarks)
Are Vegetation, Soil, or	Hydrology naturally problematic?	(If yes, explain in Remarks)
SUMMARY OF FINDINGS – Attach site m	ap and photograph log showing sampling	g locations, transects, etc.
Wetland vegetation criterion met?	Yes 🖌 No 🔄 Is the Samp	
Hydric Soils criterion met?	Yes V No within a W	etland?
Wetlands hydrology present?	Yes 🖌 No 🔄	
Remarks, Photo Details, Flagging, etc.:		
HYDROLOGY		
Field Observations:		
Surface Water Present?	Yes No 🖌 Dep	oth (inches)
Water Table Present?	Yes No 🗹 Dep	oth (inches)
Saturation Present (including capillary fr	inge)? Yes 🖌 No 🛄 Dep	oth (inches) 10.00
Wetland Hydrology Indicators		
Reliable Indicators of Wetlands	Indicators that can be Reliable with	Indicators of the Influence of Water
Hydrology	Proper Interpretation	
✓ Water-stained leaves	Hydrological records	Direct observation of inundation
Evidence of aquatic fauna	Free water in a soil test hole	Drainage patterns
Iron deposits	Saturated soil	Drift lines
Algal mats or crusts	Water marks	Scoured areas
Oxidized rhizospheres/pore	Moss trim lines	Sediment deposits
Thin muck surfaces	Presence of reduced iron	Surface soil cracks
Plants with air-filled tissue	Woody plants with adventitious	Sparsely vegetated concave
(aerenchyma)	roots	surface
Plants with polymorphic leaves	✓ Trees with shallow root systems	Microtopographic relief
Plants with floating leaves	Woody plants with enlarged	Geographic position (depression,
Hydrogen sulfide odor	lenticels	toe of slope, fringing lowland
Remarks (describe recorded data from s	tream gauge, monitoring well, aerial pho	tos, previous inspections, if available):

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

	VEGETATION – Use both co	ommon and	scientific nan	nes of plants.
--	--------------------------	-----------	----------------	----------------

Tree Stratum Plot si	ize ^{30'}				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. Red Oak	Quercus rubra	FACU	25.0	Yes	No
2. White Pine	Pinus strobus	FACU	25.0	Yes	No
3. Red Maple	Acer rubrum	FAC	25.0	Yes	Yes
4.					
5.					
6.					
7.					
8.					
9.					
	-	<u>75.0</u> = 1	otal Cover		
Shrub/Sapling Stratum Plot si	ize 15'				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name		,	(),,	(yes/no)
1. European Buckthorn	Rhamnus frangula	FAC	20.0	Yes	Yes
2. Higbush Blueberry	Vaccinium corymbosum	FACW	30.0	Yes	Yes
3. Red Maple	Acer rubrum	FAC	10.0	No	No
4.					
5.					
6.					
7.					
8.					
9.					
	6	50.0 = 7	otal Cover		I
Llorb Stratum Dist si	-				
Herb Stratum Plot si	Ze			5	
		Indicator	Absolute		Wetland
	Coloratific norma	Status	% Cover	(yes/no)	Indictor?
Common name 1. Cinnamon Fern	Scientific name Osmunda cinnamomea	FACW	40.0	Yes	(yes/no) _{Yes}
2. Starflower	Trientalis borealis	FAC	10.0	Yes	Yes
3.		FAC	10.0	165	165
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					
11.					
<u> </u>	1	$\frac{1}{50.0} = 7$	otal Cover	1	
	<u>_</u>	5 <u>0.0</u> = 1	otal Cover		

VEGETATION – continued.

Woody Vine Stratum	Plot size	_			
		Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?
Common name	Scientific name				(yes/no)
1.					
2.					
3.					
4.					
		<u>0.0</u> = T	otal Cover		

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No						
Dominance Test:	Number of	Number of dominant speci	es that are	Do wetland indicator plants make up		
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?		
	7	5		Yes _ 🖌 _ No		
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result		
	OBL species		X 1	= 0.00		
	FACW species		X 2	= 0.00		
	FAC species		X 3	= 0.00		
	FACU species		X 4	= 0.00		
	UPL species		X 5	= 0.00		
Column Totals (A) 0 (B) 0						
	Prevalence Index			Is the Prevalence Index \leq 3.0?		
0.00 YesNo						
Wetland vegetation	Wetland vegetation criterion met? Yes Ves Ves					

Definitions of Vegetation Strata

Tree -Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of heightShrub / Sapling -Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tallHerb -All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tallWoody vines -All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges					
Range	Midpoint				
1-5 %	3.0 %				
6-15 %	10.5 %				
15-25 %	20.5 %				
26-50 %	38.0 %				
51-75 %	63.0 %				
76-95 %	85.5 %				
96-100 %	98.0 %				

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)										
Depth	Matrix			Redox F	1	1	2			
(inches)	Color (moist)						on ²	Texture	Remarks	
0-8 8-18	10yr 2/1 10yr 4/2		sandy loam redox						redox present	
0.10	1091 112									
17 0.0							2.			
	centration, D=Dep			ix, MS=N	lasked San	id Grains			e Lining, M=Matrix oblematic Hydric Soils	
Histosol	ndicators (Check	all tildt		value Be	low Surfa	co (59)		2 cm Muck	-	
	oipedon (A2)				rface (S9)		┢	1	Peat or Peat (S3)	
	-				. ,			- · 1		
Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17)							· · ·			
Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21)									• • •	
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22)										
Thick Dark Surface (A12) Redox Depressions (F8)										
Sandy Mucky Mineral (S1)										
Sandy Gleyed Matrix (S4)										
Sandy R	edox (S5)								de Explanation in	
	Stripped Matrix (S6) Remarks)									
Dark Su	Dark Surface (S7)									
Restrictive La	Restrictive Layer (if observed) Type: Depth (inches):									
Remarks:										
			🖂	•	<u> </u>					
Hydric Soils	criterion met?		Yes 🔤 🖌	_ No						

SOIL

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3 City/Town: Millis Sampling Date: July 19	2023
Applicant/Owner: Town of Millis Sampling Point or Zone: wet SP5	
Investigator(s): Leah Basbanes Latitude / Longitude: 42.16917, -7134025	
Soil Map Unit Name: <u>Swansea</u> NWI or DEP Classification: <u>WS1</u>	
Are climatic/hydrologic conditions on the site typical for this time of year? Yes 🖌 No 🛄 (If no, explain in Re	emarks)
Are Vegetation, Soil, or Hydrology significantly disturbed? (If yes, explain in Remarks)	
Are Vegetation, Soil, or Hydrology naturally problematic? (If yes, explain in Remarks)	
SUMMARY OF FINDINGS – Attach site map and photograph log showing sampling locations, transects, etc.	
Wetland vegetation criterion met? Yes ✓ No Is the Sampled Area Yes ✓ No]
Hydric Soils criterion met?Yes ✓ Nowithin a Wetland?Wetlands hydrology present?Yes ✓ No	
Remarks, Photo Details, Flagging, etc.:	
HYDROLOGY	
Field Observations:	
Surface Water Present? Yes No 🖌 Depth (inches)	
Water Table Present? Yes No Image: Comparison of the second s	
Saturation Present (including capillary fringe)? Yes 🖌 No Depth (inches) 9.00	
Wetland Hydrology Indicators	
Reliable Indicators of Wetlands Indicators that can be Reliable with Indicators of the Influence of W	/ater
Hydrology Proper Interpretation	
Water-stained leaves Hydrological records Direct observation of inune	dation
Evidence of aquatic fauna	
Iron deposits ✓ Saturated soil Drift lines Algal mats or crusts Water marks Scoured areas	
Algal mats or crusts Water marks Scoured areas Oxidized rhizospheres/pore Moss trim lines Sediment deposits	
linings	
Thin muck surfaces Presence of reduced iron Surface soil cracks	
Plants with air-filled tissue Woody plants with adventitious Sparsely vegetated concav	e
(aerenchyma) roots surface	
Plants with polymorphic leaves 🗹 Trees with shallow root systems 💭 Microtopographic relief	
Plants with floating leaves Woody plants with enlarged Geographic position (depre	
Hydrogen sulfide odor lenticels toe of slope, fringing low	/land
Remarks (describe recorded data from stream gauge, monitoring well, aerial photos, previous inspections, if availa	able):

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

	VEGETATION – Use both co	ommon and	scientific nan	nes of plants.
--	--------------------------	-----------	----------------	----------------

Tree Stratum Plot si	ze_ ^{30'}				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. Red Oak	Quercus rubra	FACU	20.0	Yes	No
2. White Pine	Pinus strobus	FACU	20.0	Yes	No
3. Red Maple	Acer rubrum	FAC	40.0	Yes	Yes
4.					
5.					
6.					
7.					
8.					
9.					
	<u>}</u>	<u>30.0</u> = 1	otal Cover		
Shrub/Sapling Stratum Plot si	ze ^{15'}				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name	514145		(yes, no)	(yes/no)
1. European Buckthorn	Rhamnus frangula	FAC	40.0	Yes	Yes
2. Higbush Blueberry	Vaccinium corymbosum	FACW	30.0	Yes	Yes
3. Red Maple	Acer rubrum	FAC	10.0	No	No
4.					
5.					
6.					
7.					
8.					
9.					
	8	 30.0 = 1	otal Cover		
Liegh Cturture Dist a					
Herb Stratum Plot si	ze_5				
		Indicator	Absolute		Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name	54044	40.0		(yes/no)
1. Cinnamon Fern	Osmunda cinnamomea	FACW	40.0	Yes	Yes
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					
		<u> 0.0 </u>	otal Cover		

VEGETATION – continued.

Woody Vine Stratum	Plot size	_			
		Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?
Common name	Scientific name				(yes/no)
1. Poison Ivy	Toxicodendron radicans	FAC	30.0	Yes	Yes
2.					
3.					
4.					
		= 1	otal Cover		

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No						
Dominance Test:	Number of	Number of dominant speci	es that are	Do wetland indicator plants make up		
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?		
	7	5		Yes _ 🖌 _ No		
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result		
	OBL species		X 1	= 0.00		
	FACW species	X 2		= 0.00		
FAC species			X 3	= 0.00		
	FACU species		X 4	= 0.00		
	UPL species		X 5	= 0.00		
	Column Totals	(A) 0		(B) 0		
	Prevalence Index			Is the Prevalence Index \leq 3.0?		
U.UU Yes						
Wetland vegetation	Wetland vegetation criterion met? Yes No					

Definitions of Vegetation Strata

Tree -Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of heightShrub / Sapling -Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tallHerb -All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tallWoody vines -All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges					
Range	Midpoint				
1-5 %	3.0 %				
6-15 %	10.5 %				
15-25 %	20.5 %				
26-50 %	38.0 %				
51-75 %	63.0 %				
76-95 %	85.5 %				
96-100 %	98.0 %				

Color (moist) % Color (moist) % Type1 Location2 Texture Remain 0-8 10yr 2/1	Color (moist) % Type1 Location2 Texture Remarks 10yr 2/1 10yr 5/2 10yr 5/2 </th <th>Profile Desc Depth</th> <th>ription: (Describe Matrix</th> <th>e to the</th> <th>depth nee</th> <th></th> <th>o docum Redox Fe</th> <th></th> <th>ndicator c</th> <th>or co</th> <th>nfirm the abse</th> <th>nce of indicators)</th>	Profile Desc Depth	r iption: (Describe Matrix	e to the	depth nee		o docum Redox Fe		ndicator c	or co	nfirm the abse	nce of indicators)
0-8 10yr 2/1 sandy loam redox predox p	10yr 2/1 image: sandy loam redox present 10yr 5/2 image: sandy loam redox present 10il ridicators (Check all that apply) Indicators for Problematic Hydric Soils 0sool (A1) Polyvalue Below Surface (S9) 5 cm Muck (A10)	•		%	Color (n		1	1	Locatio	n ²	Texture	Remarks
Image: Stratified Layers (A5) Image: Redox Dark Surface (F6) Image: Redox Dark Surface (F7) Very Shallow Dark Surface Image: Stratified Layers (A12) Image: Redox Dark Surface (F7) Very Shallow Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A12) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Thick Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image: Redox Dark Surface Image: Stratified Layers (A5) Image: Redox Dark Surface Image: Redox Dark Surface Image	Image: Section of the section of th	0-8	10yr 2/1			-						
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) rogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) oleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) Other (Include Explanation in Remarks) opped Matrix (S6) Memarks) k Surface (S7) Type: Depth (inches):	8-18	10yr 5/2								sandy loam	redox present
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ileted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Gleyed Matrix (S6) Other (Include Explanation in Remarks) Remarks) oped Matrix (S6) Type:											
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ileted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) Other (Include Explanation in Remarks) oped Matrix (S6) Memarks) k Surface (S7) Type:											
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ileted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Gleyed Matrix (S6) Other (Include Explanation in Remarks) Remarks) oped Matrix (S6) Type:											
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ileted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) Image: Spodic (A17) dy Mucky Mineral (S1) Other (Include Explanation in Remarks) Remarks) oped Matrix (S6) Type:											
Hydric Soil Indicators (Check all that apply) Indicators for Problematic Hyd Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	oil Indicators (Check all that apply) Indicators for Problematic Hydric Soils osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) rogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) tified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Ideted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Gleyed Matrix (S4) Other (Include Explanation in Remarks) Remarks) oped Matrix (S6) Type: Depth (inches):											
Histosol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	osol (A1) Polyvalue Below Surface (S8) 2 cm Muck (A10) ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ick Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) itified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ideted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Redox (S5) Other (Include Explanation in Remarks) pped Matrix (S6) K Surface (S7)	¹ Type: C=Con	centration, D=Dep	letion, R	l M=Reduce	d Matri	l x, MS=M	l lasked San	d Grains	² Lo	cation: PL=Pore	Lining, M=Matrix
Histic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S) Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F) Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Redox (S5) Other (Include Explanation	ic Epipedon (A2) Thin Dark Surface (S9) 5 cm Mucky Peat or Peat (S3) ic K Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) itified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ieted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) Image: Comparison of the state	Hydric Soil I	ndicators (Check	all that	apply)	-				Inc	licators for Pro	blematic Hydric Soils
Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Image: Comparison of the standard standar	ck Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) itified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ideted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ick Dark Surface (A12) Redox Depressions (F8) Image: Comparison of the start of t					1 .					1	-
Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) ✓ Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Very Shallow Dark Surface Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Other (Include Explanation	Irogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17) Itified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Indeted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Ick Dark Surface (A12) Redox Depressions (F8) Ick Dark Surface (A12) Ick Dark Surface (A12) Redox Depressions (F8) Ick Dark Surface (F7) Ick Dark Surface (A12) Ick Dark Surface (F7) Ick Dark Surface (F7) Ick Dark Surface (A12) Ick Dark Surface (F7) Ick Dark Surface (F22) Ick Dark Surface (S1) Ick Dark Surface (F7) Ick Dark Surface (F7) Ick Dark Surface (S5) Ick Dark Surface (S7) Ick Dark Surface (S7) Ick Dark Surface (S7) Ick Dark Surface (S7) Ick Dark Surface (S7)					1					5 cm Mucky	Peat or Peat (S3)
Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Other (Include Explanation	titified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21) eleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) ek Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Gleyed Matrix (S4) dy Redox (S5) Other (Include Explanation in Remarks) opped Matrix (S6) Remarks)					1			(F2)			
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Other (Include Explanation	Ideted Below Dark Surface (A11) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Ick Dark Surface (A12) Redox Depressions (F8) Ick Dark Surface (A12) Redox Depressions (F8) Ick Dark Surface (S1) Ick Depleted Dark Surface (F22) Ick Dark Surface (S1) Ick Depleted Dark Surface (F2) Ick Dark Surface (S1) Ick Depleted Dark Surface (F2) Ick Dark Surface (S7) Ick Depleted Dark Surface (F2) Ick Dark Surface (S7) Ick Depleted Dark Surface (F2) Ick Dark Surface (S7) Ick Depleted Dark Surface (F2) Ick Dark Surface (S7) Ick Depleted Dark Surface (F2) Ick Dark Surface (F2) Ick Depleted Dark Surface (F2) Ick Dark Surface (F2) Ick Depleted Dark Surface (F2)					- ·			<u>c)</u>		1	
Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Other (Include Explanation	ck Dark Surface (A12) Redox Depressions (F8) dy Mucky Mineral (S1) dy Gleyed Matrix (S4) dy Redox (S5) Other (Include Explanation in peed Matrix (S6) k Surface (S7) Remarks)			face (A		1			-		1	
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Other (Include Explanation	dy Mucky Mineral (S1) dy Gleyed Matrix (S4) dy Redox (S5) pped Matrix (S6) k Surface (S7) ve Layer (if observed) Type: Depth (inches):				<u></u>	1 .					very snallow	Dark Surface (F22)
Sandy Redox (S5) Other (Include Explanation	dy Redox (S5) Other (Include Explanation in Remarks) opped Matrix (S6) Remarks) k Surface (S7) Depth (inches):				_	1 11000	<u>, , , , , , , , , , , , , , , , , , , </u>		- 1			
	pped Matrix (S6) Remarks) k Surface (S7) Depth (inches):	Sandy G	Gleyed Matrix (S4)								
Stripped Matrix (S6) Remarks)	k Surface (S7) ve Layer (if observed) Type: Depth (inches):	Sandy F	Redox (S5)								Other (Includ	le Explanation in
	ve Layer (if observed) Type: Depth (inches):	Strippe	d Matrix (S6)								Remarks)	
Dark Surface (S7)												
Restrictive Layer (if observed) Type: Depth (inches):		Restrictive L	ayer (if observed.) Ту	pe:				De	pth	(inches):	
		Hudric Soils	criterion met?		Yes _	$\overline{\mathbf{A}}$	No					

SOIL

ATTACHMENT D Project Plans

SELECT BOARD

CRAIG SCHULTZE

CHAIR

ELLEN ROSENFELD

VICE CHAIR

ERIN UNDERHILL

CLERK

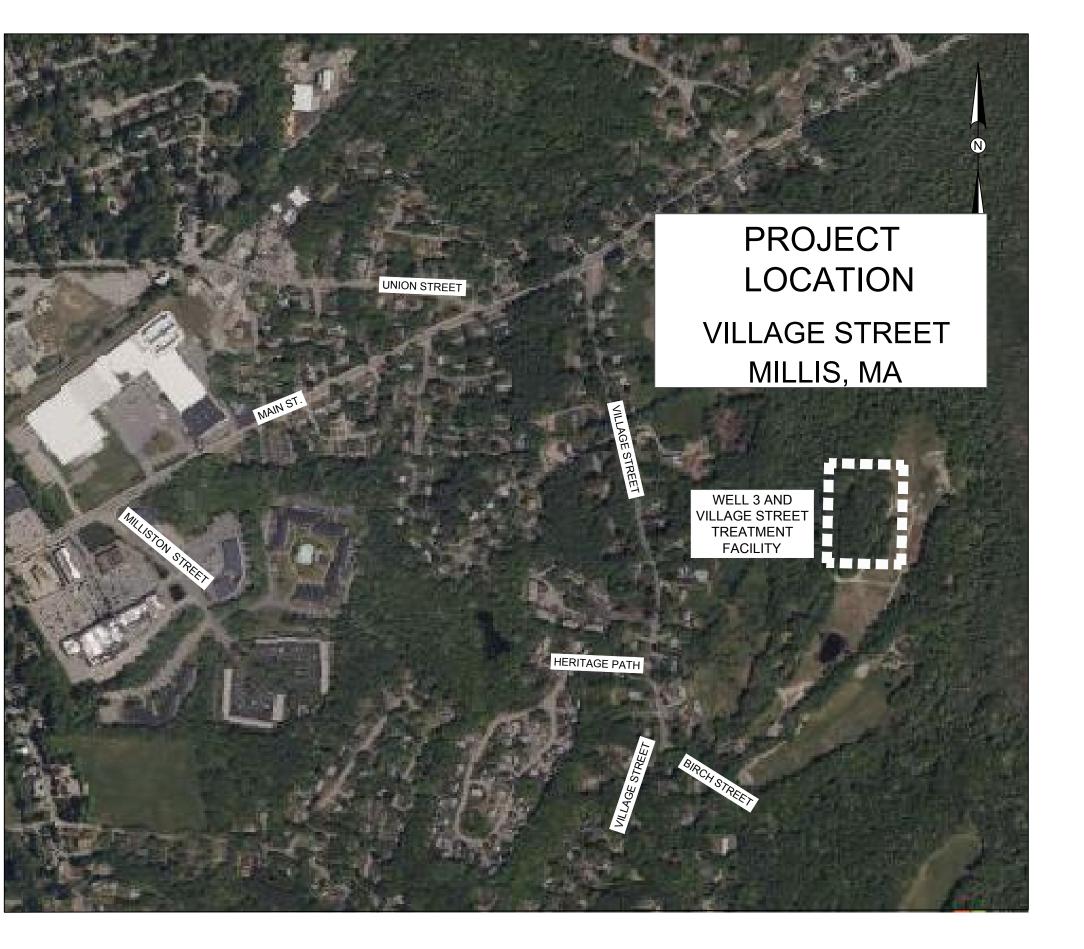
DEPARTMENT OF PUBLIC WORKS

JAMES F. McKAY

DIRECTOR

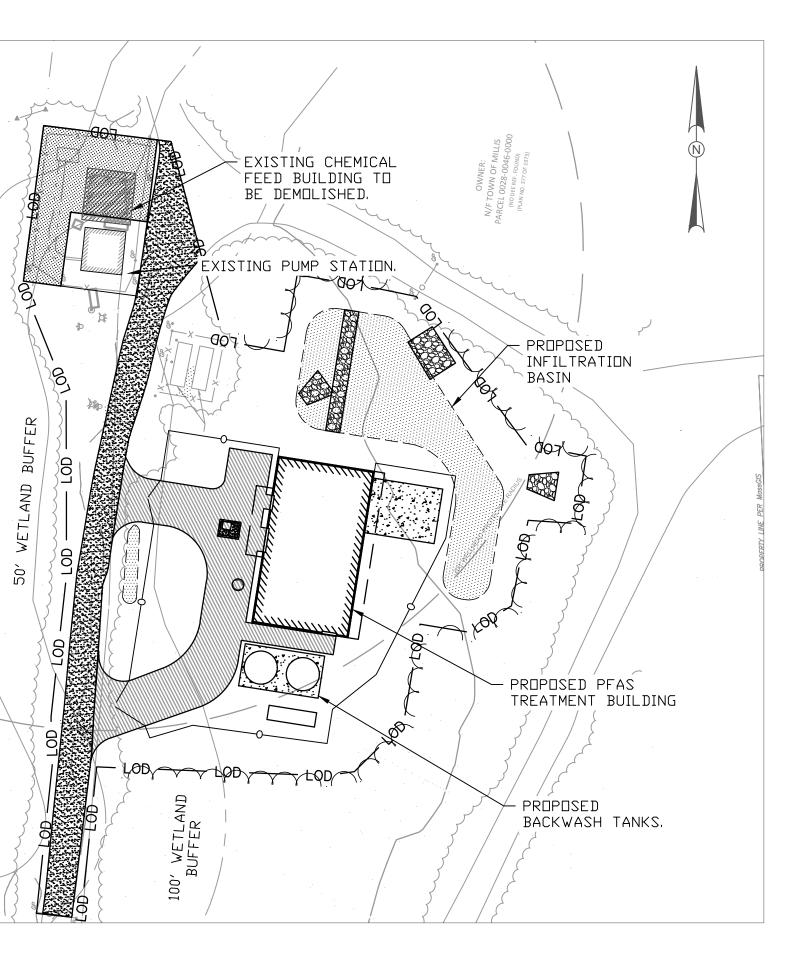
WATER AND SEWER DEPARTMENT

RON McKENNEY


SUPERINTENDENT

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

PERMIT REVIEW SET


OCTOBER 2023

LOCUS PLAN SCALE: 1" =500'

SITE PLAN SCALE: 1" = 40'

		I	EXISTING LEGEND
SHEET NUMBER	DRAWING TITLE	— 129—	MINOR CONTOUR
COVER	COVER	—130—	MAJOR CONTOUR
G-001	GENERAL NOTES AND LEGEND	× 129.9	SPOT ELEVATION
C-101	EXISTING CONDITIONS PLAN	<i>DSW</i>	DIGSAFE WATER LINE
C-102	SITE PREPARATION PLAN	W	RECORD WATER LINE
C-103	OVERALL SITE PLAN	— A/R —	ABANDONED/REMOVED WATER
C-104	GRADING PLAN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HYDRANT
C-105	UTILITIES PLAN		WATER GATE
C-501	CIVIL DETAILS SHEET- 1		WATER WELL
C-502	CIVIL DETAILS SHEET- 2	SP	STANDPIPE
M-001	PROCESS FLOW DIAGRAM	<i>E</i>	ELECTRIC LINE
M-002	PROCESS EQUIPMENT SCHEDULES	OHW	OVERHEAD WIRES
M-003	PROCESS FLOOR PLAN		UTILITY POLE
M-004	PROCESS SECTION	\downarrow	GUY WIRE
M-005	PUMP AND EXISTING BUILDING MODIFICATIONS	\boxtimes	TRANSFORMER
M-006	CHEMICAL FEED SYSTEM LAYOUT	Ē	ELECTRIC MANHOLE
M-007	SODIUM HYPOCHLITE CHEMICAL FEED SCHEMATIC	—— <i>DSG</i> ——	DIGSAFE GAS LINES
M-008	SODIUM HYDROXIDE CHEMICAL FEED SCHEMATIC	G	RECORD GAS LINES
M-009	SODIUM FLUORIDE CHEMICAL FEED & CHLORINE ANALYZER SCHEMATICS	GM	GAS METER
M-010	SURGE PROTECTION VAULT	<u>- 246 - 246 - 246</u>	WETLAND LIMIT
M-011	BACKWASH TANK		WETLAND FLAG
M-501	PROCESS DETAILS SHEET 1 OF 2	·	WETLAND BUFFER
M-502	PROCESS DETAILS SHEET 2 OF 2	♦ SP	SOIL PLOT
A-1	GENERAL NOTES, LEGENDS & ABBREVIATIONS	X	CHAINLINK FENCE
A-2	CODE SUMMARY & LIFE SAFETY PLAN		TREELINE
A-10	ARCH PLANS	D	DRAIN LINE
A-10 A-20	ARCH ELEVATIONS AND SECTIONS	\bigcirc	DRAIN MANHOLE
A-20	SCHEDULES AND DETAILS	S	SEWER LINE
		S	SEWER MANHOLE
S-101	GENERAL NOTES SHEET 1 OF 2	CLF	CHAIN LINK FENCE
S-102	GENERAL NOTES SHEET 2 OF 2	CP	CONCRETE PAD
S-201		DI	DUCTILE IRON
S-202	TYPICAL DETAIL SHEET 2 OF 2	EOP	EDGE OF PAVEMENT
S-301	FOUNDATION		
S-401	SECTIONS		
E-001	ELECTRICAL LEGEND AND GENERAL NOTES		
E-002	ELECTRICAL GENERAL NOTES	_	
E-003	ELECTRICAL TREATMENT BUILDING ONE LINE DIAGRAM	<u>!</u> 	
E-004	ELECTRICAL WELL STATION #3 ONE LINE DIAGRAMS		PROPOSED TREELINE
E-101	ELECTRICAL SITE PLAN	LOD	
E-102	ELECTRICAL LOWER LEVEL FLOOR POWER PLAN		
E-102	ELECTRICAL UPPER LEVEL FLOOR POWER PLAN	G	
E-201	ELECTRICAL LIGHTING FLOOR PLAN	s	SEWER LINE
E-202	ELECTRICAL LIGHTING UPPER LEVEL PLAN	—— D ——	
E-301	ELECTRICAL LOW VOLTAGE FLOOR PLAN	8" BW	BACKWASH LINE
E-400	ELECTRICAL DIAGRAMS I		
E-401	ELECTRICAL DIAGRAMS II	——— w ——	
E-402	ELECTRICAL SCHEDULES	-[][.]	EROSION CONTROL
E-403	ELECTRICAL SITE DETAILS		VEHICULAR ACCESS GATE
E-404	ELECTRICAL DETAILS	— 133 —	PROPOSED 1-FT CONTOUR
FP-001	FIRE PROTECTION LEGEND AND GENERAL NOTES	×	PROPOSED WATER GATE
FP-101	FIRE PROTECTION FLOOR PLAN		
FP-200	FIRE PROTECTION DETAILS		AREA OF WETLAND RESTORATI
H-001	HVAC LEGEND AND GENERAL NOTES		MODIFIED ROCKFILL
H-101	HVAC FLOOR PLAN		
H-200	HVAC SCHEDULES AND DETAILS		CONCRETE PAD
P-001	PLUMBING LEGEND AND GENERAL NOTES		
P-002	PLUMBING SITE PLAN		EXTENT OF ASPHALT PAVING
P-002	PLUMBING UNDERGROUND FLOOR PLAN		PROPOSED BUILDING
P-100 P-101	PLUMBING UNDERGROUND FLOOR FLAN	[]	
			EXTENT OF STORMWATER FEA
P-200	PLUMBING DETAILS	$\overline{}$	EXTENT OF MATERIAL DEMOLIT
			EXTENT OF TREE CLEARING AN

- ONTOUR
- CONTOUR
- EVATION
- E WATER LINE
- WATER LINE
- NED/REMOVED WATER LINE
- GATE
- NELL
- IC LINE
- AD WIRES
- POLE
- ORMER
- IC MANHOLE
- E GAS LINES
-) GAS LINES
- TER
- D LIMIT D FLAG
- D BUFFER
- NK FENCE
- IANHOLE
- LINE
- MANHOLE
- INK FENCE
- ETE PAD
- IRON
- PAVEMENT
- LEGEND ED TREELINE
- DISTURBANCE
- NK FENCE

- SH LINE TER LINE
- I CONTROL
- AR ACCESS GATE
- ED 1-FT CONTOUR ED WATER GATE
- WETLAND RESTORATION
- ROCKFILL

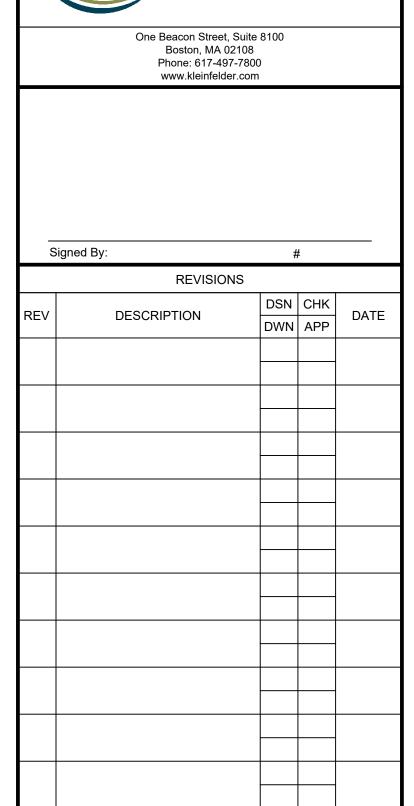
- ED BUILDING
- OF STORMWATER FEATURE
- OF MATERIAL DEMOLITION
- EXTENT OF TREE CLEARING AND GRUBBING

GENERAL NOTES:

- 1. PRIOR TO BIDDING THE PROJECT, THE CONTRACTOR IS ENCOURAGED VISIT THE SITE TO VERIFY EXISTING CONDITIONS.
- 2. BASE MAP INFORMATION FOUND ON SHEETS C-101, C-102, C-103, C-104, AND C-105 WAS PREPARED BY BRENNAN CONSULTING, INC. ON SEPTEMBER 1, 2022, SEPTEMBER 6, 2022, AND JULY 25, 2023. THE COORDINATES OF THE SURVEY ARE IN FEET AND ARE BASED UPON THE NORTH AMERICAN DATUM OF 1983 MASSACHUSETTS STATE PLANE (NAD '83 MASSACHUSETTS STATE PLANE, MAINLAND ZONE). THE ELEVATIONS OF THE SURVEYS ARE IN FEET AND REFER TO NORTH AMERICAN VERTICAL DATUM OF 1988 (NAD '88).
- 3. FOR TEMPORARY BENCH MARKS, SEE SHEET C-101:

TBM BREN-1: BENCH TIE SPIKE SET IN UTILITY POLE AT WELL BUILDING. ELEVATION = 124.79' TBM BREN-2: X-CUT ON HYDRANT BONNET NUT. ELEVATION = 125.29'

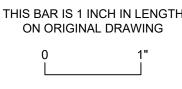
- 4. THE PROPERTY LINES SHOWN HERE WERE COMPILED FROM MASSGIS ONLINE DATABASE, ARE APPROXIMATE ONLY, AND ARE SHOWN FOR GRAPHICAL PURPOSES ONLY
- 5. THE WETLANDS DEPICTED HEREON WERE DELINEATED ON JULY 19, 2023.
- 6. THE CONTRACTOR SHALL CALL THE DIG-SAFE CENTER AT 1-888-344-7233 A MINIMUM OF 72 HOURS PRIOR TO ANY EXCAVATION TO LOCATE UNDERGROUND UTILITIES IN THE FIELD AND NOTIFY UTILITIES OF CONSTRUCTION.
- 7. INFORMATION SHOWN ON THE DRAWINGS RELATING TO MATERIALS, CONDITIONS AND/OR LOCATIONS OF EXISTING STRUCTURES AND UTILITIES HAS BEEN COMPILED FROM AVAILABLE INFORMATION INCLUDING FIELD SURVEY, AERIAL PHOTOGRAPHY, RECORD MAPS AND DRAWINGS, AND UTILITY RECORD DRAWINGS AND IS NOT GUARANTEED CORRECT OR COMPLETE. IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY EXISTING CONDITIONS AND DIMENSIONS INCLUDING THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO BEGINNING CONSTRUCTION. LOCATIONS AND DEPTHS OF CRITICAL UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR IN THE FIELD BY TEST PITS AS APPROVED BY THE ENGINEER. ANY DAMAGE TO UTILITIES CAUSED BY THE CONTRACTOR SHALL BE THE CONTRACTOR'S RESPONSIBILITY, AND COSTS FOR THE REPAIR OR REPLACEMENT OF SUCH DAMAGED UTILITIES SHALL BE BORNE BY THE CONTRACTOR.
- 8. ACCORDING TO FEMA FIRM (FLOOD INSURANCE RATE MAP) COMMUNITY PANEL 250244; REVISION DATED 7/17/2012, THE APPROXIMATE FLOODPLAIN ELEVATION ON THE SITE IS 123 FEET.
- 9. THE PROPOSED PROJECT REQUIRE NOTICE OF INTENT APPROVAL BY THE TOWN OF MILLIS CONSERVATION COMMISSION. ALL CONSTRUCTION ACTIVITIES SHALL BE COMPLETED IN ACCORDANCE WITH THAT PERMIT.


SOIL EROSION AND SEDIMENT CONTROL NOTES

- 1. APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO SOIL DISTURBANCE. MEASURES SHALL BE TAKEN TO CONTROL EROSION WITHIN THE PROJECT AREA. SEDIMENT IN RUNOFF WATER SHALL BE TRAPPED AND RETAINED WITHIN THE PROJECT AREA. WETLAND AREAS AND SURFACE WATERS SHALL BE PROTECTED FROM SEDIMENT.
- 2. CONTRACTOR SHALL MINIMIZE TOTAL AREA OF DISTURBANCE AND PROTECT NATURAL FEATURES AND SOIL
- 3. INSTALL AND MAINTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS AND/OR IN ACCORDANCE WITH ALL PERMIT REQUIREMENTS. THE MORE STRINGENT REQUIREMENT SHALL APPLY.
- 4. CONTRACTOR TO COMPLY WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS AND REGULATIONS INCLUDING WASTE DISPOSAL.
- 5. CONTRACTOR SHALL PROPERLY MANAGE ON-SITE CONSTRUCTION AND WASTE MATERIALS.
- 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE DUST CONTROL MEASURES AT THE SITE.
- 7. STOCKPILE SIDE SLOPES SHALL NOT BE GREATER THAN 1:1. ALL STOCKPILES SHALL BE SURROUNDED BY SEDIMENT CONTROLS.
- 8. A VEHICLE TRACKING PAD OR OTHER APPROVED STABILIZATION METHOD SHALL BE CONSTRUCTED AT ALL ENTRANCE/EXIT POINTS OF THE SITE TO PREVENT SOIL CARRIED ONTO ROADWAYS AND OFF THE SITE. CONTRACTOR SHALL FURNISH A MECHANICAL SWEEPER ON SITE FOR THE PURPOSE OF SWEEPING ALL PAVED AREAS ON A DAILY BASIS OR AS REQUIRED TO PREVENT SOIL TRACKING ON ROADWAYS.
- 9. ALL PREVIOUSLY DISTURBED LAND SHALL BE STABILIZED BY APPROVED METHODS WITHIN 14 DAYS IF LEFT UNDISTURBED. THIS INCLUDES STOCKPILES, CONSTRUCTION ENTRANCES, GRADED AREAS AND OTHER CONSTRUCTION ACTIVITY RELATED CLEARING
- 10. PERMANENT SEEDING SHALL BE UNDERTAKEN IN THE SPRING FROM APRIL 15 THROUGH JUNE 1, AND IN LATE SUMMER AND EARLY FALL FROM AUGUST 15 THROUGH OCTOBER 15. DURING THE PEAK SUMMER MONTHS AND IN THE FALL AFTER OCTOBER 15, WHEN SEEDING IS FOUND TO BE IMPRACTICAL, APPROPRIATE TEMPORARY STABILIZATION SHALL BE APPLIED. PERMANENT SEEDING MAY BE UNDERTAKEN DURING THE SUMMER IF PLANS PROVIDE FOR ADEQUATE MULCHING AND WATERING.
- 11. IF WORK IS HALTED OVER WINTER MONTHS THE CONTRACTOR SHALL BE RESPONSIBLE FOR STABILIZING THE AREA THROUGH GROUNDCOVER PRACTICES.
- 12. CONTRACTOR SHALL INSTALL EROSION AND SEDIMENTATION CONTROLS IN ACCORDANCE WITH SPECIFICATION SECTION 01568 AND DETAILS PROVIDED ON SHEET C-101 THROUGH C-502.

WORK OF GENERAL CONTRACTOR:

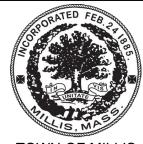
- 1. THE GENERAL CONTRACTOR SHALL FURNISH ALL LABOR, MATERIALS, EQUIPMENT AND INCIDENTALS REQUIRED TO COMPLETE THE VILLAGE STREET WTP PFAS UPGRADES, COMPLETE AND READY FOR OPERATION AS INDICATED ON THE DRAWINGS AND SPECIFICATIONS, INCLUDING ALL CONTRACT DOCUMENTS.
- 2. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR THE COORDINATION OF SUBCONTRACTORS' WORK WITH EACH OTHER AND WITH THE WORK OF THE GENERAL CONTRACTOR.
- 3. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR THE OVERALL CONSTRUCTION SEQUENCE AND NOTE THAT THE EXTREME IMPORTANCE OF THIS PROJECT. THE VILLAGE STREET WTP WILL BE OFFLINE DURING THE DURATION OF CONSTRUCTION.
- 4. THE GENERAL CONTRACTOR SHALL NOT STORE EQUIPMENT OR STOCKPILE MATERIAL WITHIN 50' WETLAND BUFFER ZONES.
- 5. THE GENERAL CONTRACTOR SHALL PROVIDE ADEQUATE EROSION CONTROL DURING CONSTRUCTION. SEE SPECIFICATION SECTION 01568 AND NOTES ON THIS PAGE.
- 6. SOME PIPE/EQUIPMENT CONNECTIONS MAY REQUIRE TRANSITION FITTING OR OTHER FITTINGS NOT SHOWN ON DRAWINGS, THE CONTRACTOR SHALL PROVIDE ADEQUATE FITTING TO MAKE COMPLETE CONNECTION.
- 7. WHERE BURIED DUCTILE IRON PIPE LEAVES/ENTERS A BUILDING OR STRUCTURE, THE GENERAL CONTRACTOR SHALL PROVIDE MULTIPLE MECHANICAL JOINT BELLS.
- 8. PROPOSED FIELD MODIFICATION, REVISIONS AND ADDITIONS TO THE DESIGN DRAWINGS MUST BE APPROVED BY THE ENGINEER, IN WRITING, BEFORE WORK BEGINS. ANY REQUEST TO DEVIATE FROM THE ENGINEER'S SPECIFIED DETAILS ON THE DESIGN DRAWINGS BY THE CONTRACTOR MUST BE SUBMITTED IN WRITING TO THE ENGINEER FOR APPROVAL.
- 9. GENERAL CONTRACTOR AND SUBCONTRACTORS MUST PROVIDE ALL MATERIAL, LABOR, EQUIPMENT, CONSUMABLES, AND ALL OTHER ITEMS REQUIRED TO COMPLETE THE WORK AS SPECIFIED ON THE DESIGN DRAWINGS, PROJECT SPECIFICATIONS, AND AS NECESSARY TO COMPLETE THE WORK.
- 10. GENERAL CONTRACTOR AND SUBCONTRACTORS SHALL VISIT THE PROJECT SITE AND OBSERVE CONDITIONS FOR THE PROPOSED CONSTRUCTION. ANY DISCREPANCY BETWEEN THE DESIGN DRAWINGS AND ACTUAL SITE CONDITIONS MUST BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER, IN WRITING, FOR RESOLUTION PRIOR TO COMMENCEMENT OF THE WORK.
- 11. THE CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS, ELEVATIONS AND DIMENSIONS PRIOR TO FABRICATING NEW WORK THAT WILL BE CONNECTED TO EXISTING CONSTRUCTION.
- 12. ALL ITEMS OF CONSTRUCTION MUST BE IN ACCORDANCE WITH LOCAL, STATE AND FEDERAL REGULATIONS APPLICABLE TO THE PROJECT.
- 13. THE CONTRACTOR IS RESPONSIBLE FOR SEGREGATING WORK AREAS FROM THE GENERAL PUBLIC USING TEMPORARY FENCES, SIGNS, CONES, CAUTION TAPE, ETC.
- 14. THE CONTRACTOR'S BASE BID FOR THIS PROJECT MUST INCLUDE ALL LABOR, MOBILIZATION, PERMITTING, MATERIALS, TEMPORARY PROTECTION, ETC. NO ADDITIONAL COSTS WILL BE SUBMITTED TO THE ENGINEER IN ORDER TO COMPLETE THE INTENT OF THE WORK AS INDICATED ON THE DESIGN DRAWINGS.
- 15. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING WATER AND ELECTRICITY REQUIRED TO PERFORM THE WORK. SUBMIT PROPOSED MEANS AND METHODS TO THE ENGINEER FOR REVIEW.
- 16. ALL DIMENSIONS AND QUANTITIES MUST BE DETERMINED OR VERIFIED BY THE CONTRACTOR. QUANTITIES TO BE CARRIED UNDER THE BASE BID WORK HAVE BEEN INDICATED ON THE CONTRACT DRAWINGS. THE CONTRACT DRAWINGS HAVE BEEN COMPILED FROM VARIOUS SOURCES AND MAY NOT REFLECT THE ACTUAL CONDITION AT THE MOMENT OF CONSTRUCTION. THE CONTRACTOR IS CAUTIONED TO TAKE ALL PRECAUTIONS AND MAKE ALL INVESTIGATIONS NECESSARY TO INSTALL THE PROPOSED WORK.
- 17. ITS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR AND THE SUBCONTRACTOR TO REVIEW ALL DRAWINGS, PROJECT MANUAL, AGENDA ETC. IN ORDER TO ASSURE THE COORDINATION OF ALL WORK AFFECTING EACH TRADE. FAILURE TO REVIEW AND COORDINATE ALL CONTRACTOR DOCUMENTS BY THE GENERAL WITH ALL THE SUBCONTRACTORS FOR APPLICABLE ITEMS OF THE WORK SHALL NOT RELIEVE THE RESPONSIBILITY PARTY FROM PERFORMING ALL WORK SO REQUIRED AS PART OF THE CONTRACT.
- 18. ITS IS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR AND THE SUBCONTRACTOR FOLLOWING THE REVIEW OF ALL THE DRAWINGS, PROJECT MANUAL, ADDENDA, ETC. TO INFORM THE ENGINEER OF ANY DISCREPANCIES IN THE DOCUMENTS AND TO OBTAIN CLARIFICATION ON ALL ITEMS AFFECTING CONSTRUCTION COST PRIOR TO THE SUBMISSION OF THE BID.



KLEINFELDER

Bright People. Right Solutions.

SCALE VERIFICATION

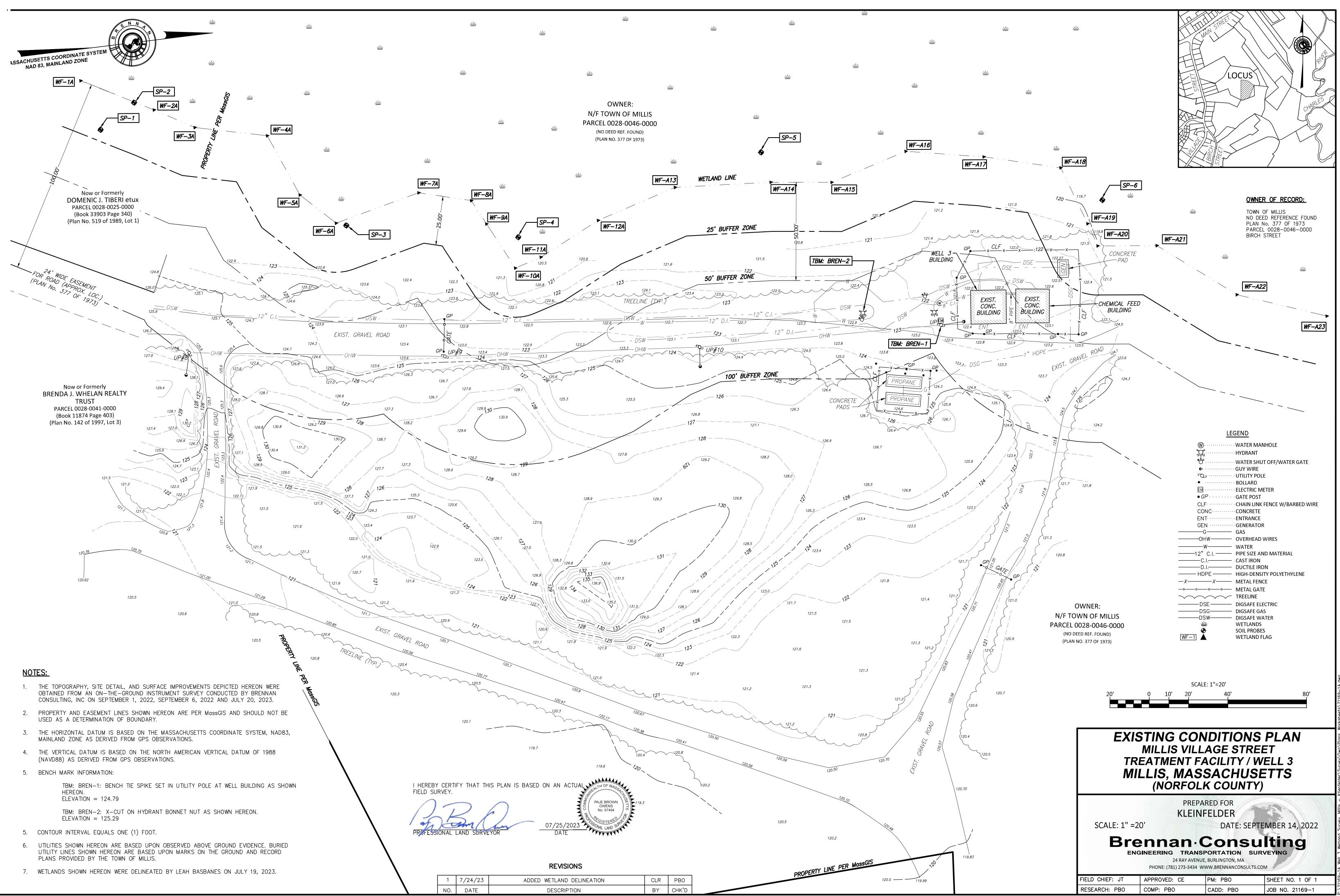

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

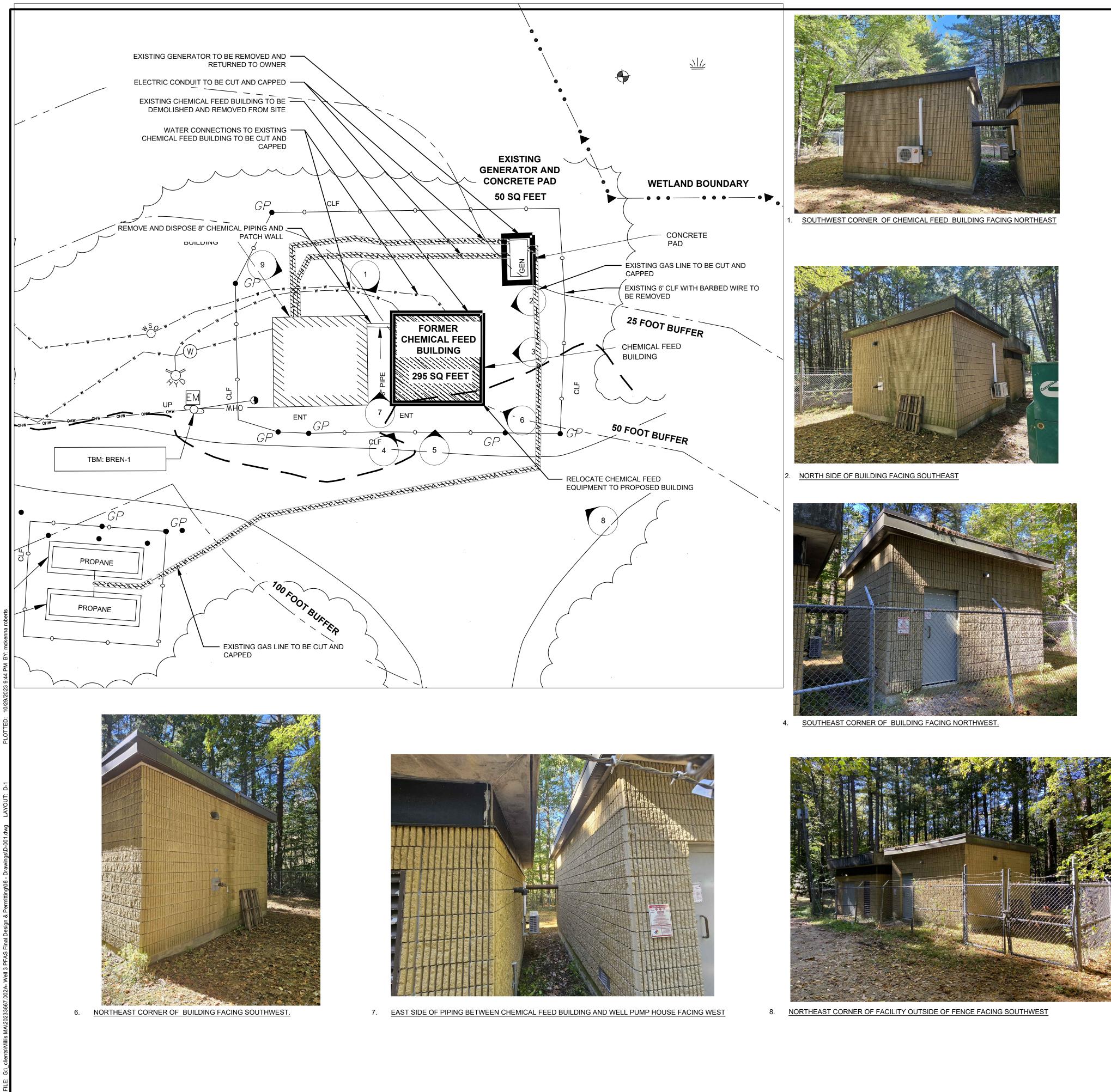
ORIGINAL DRAWING SIZE IS 22 x 34

GENERAL NOTES AND LEGEND

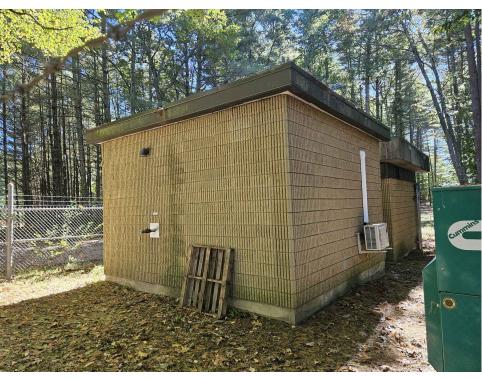
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

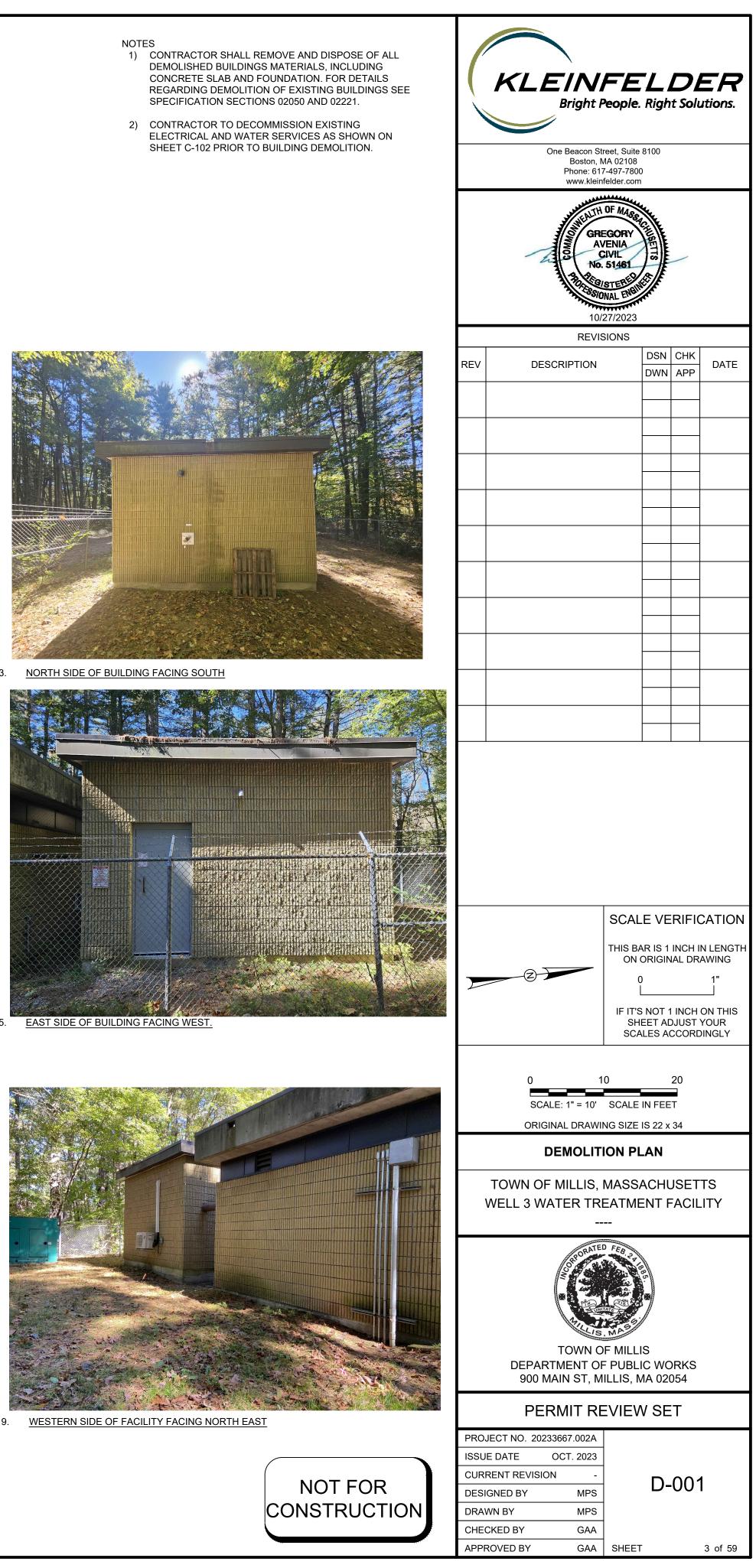
TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054

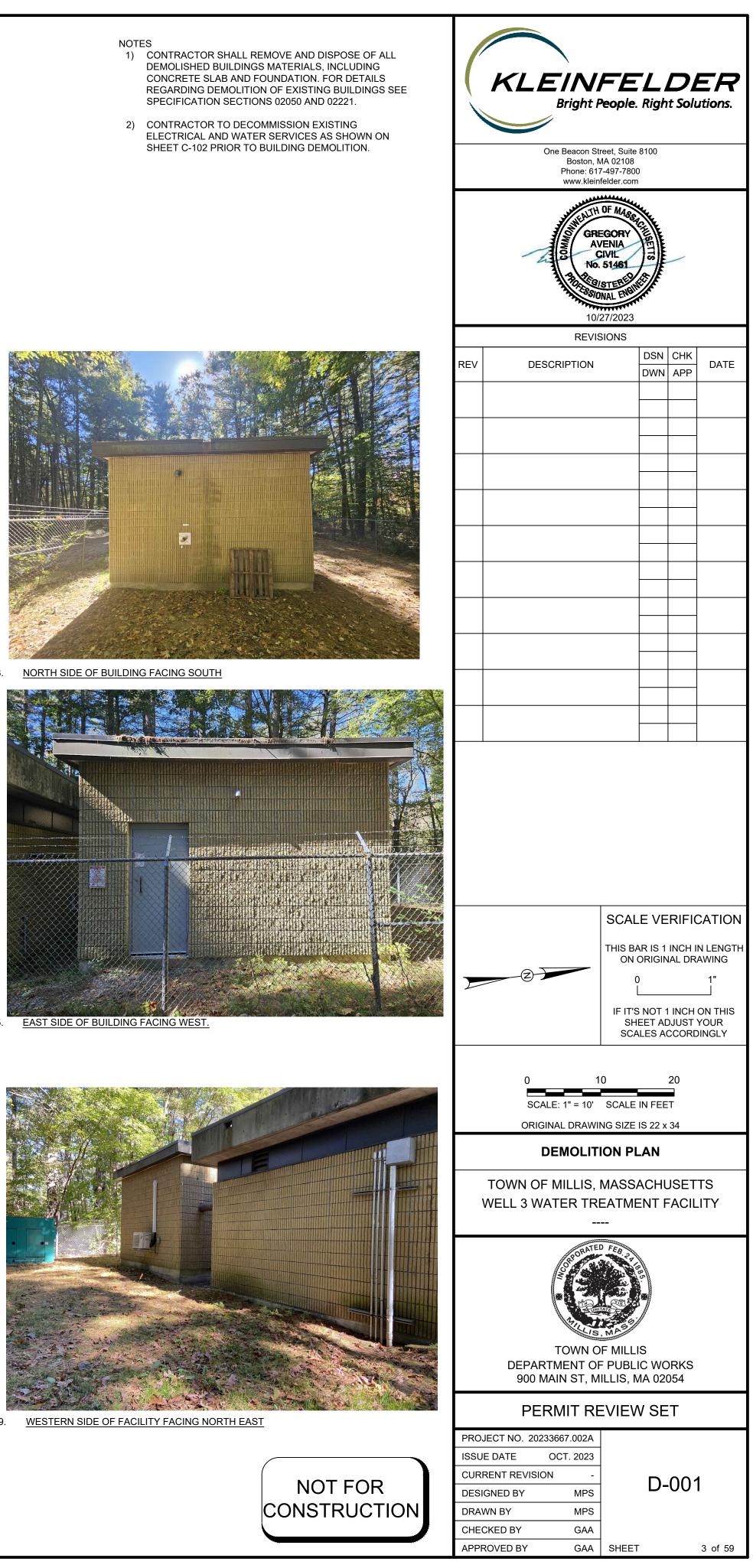

PERMIT REVIEW SET

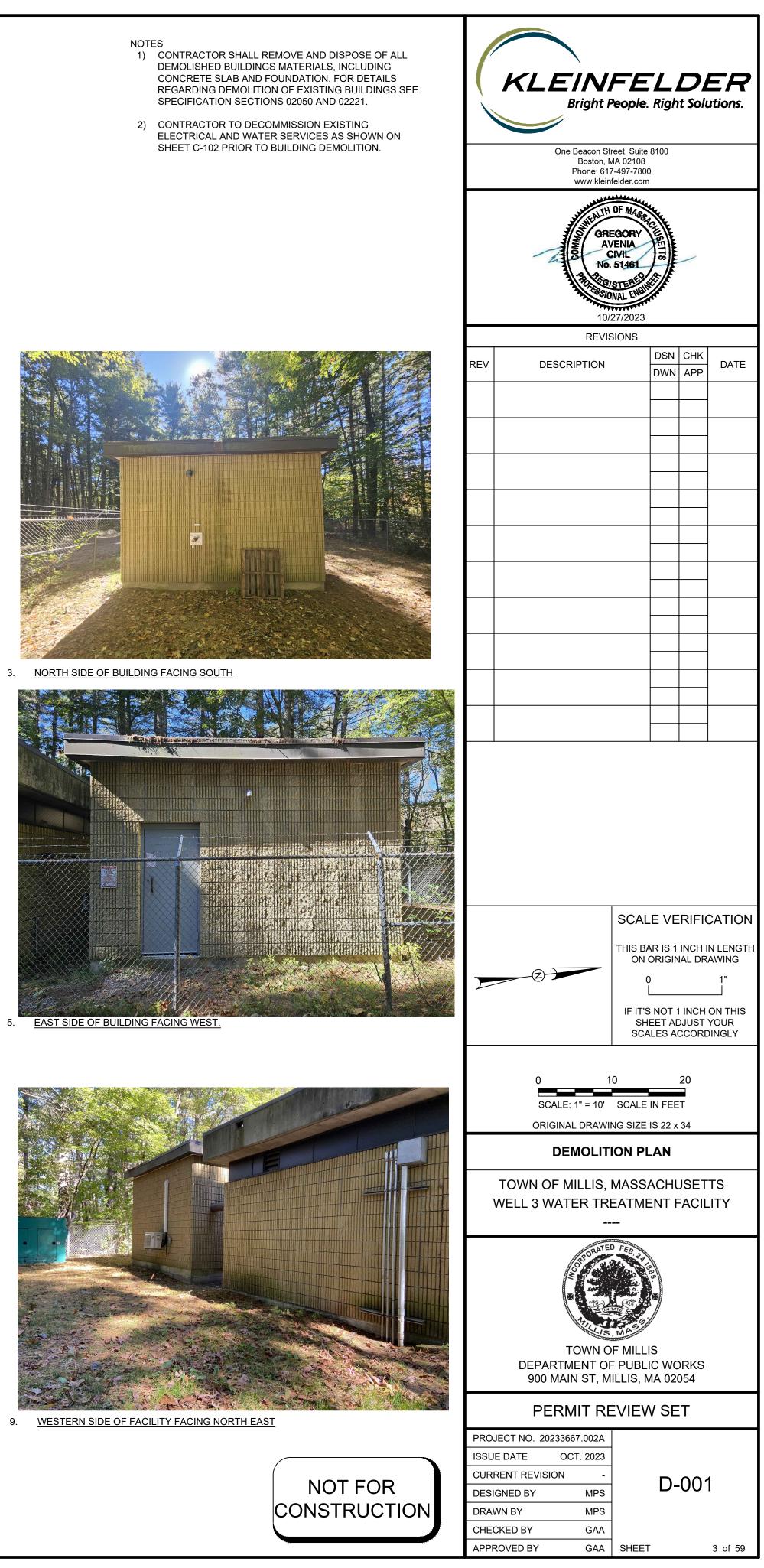

SHEET

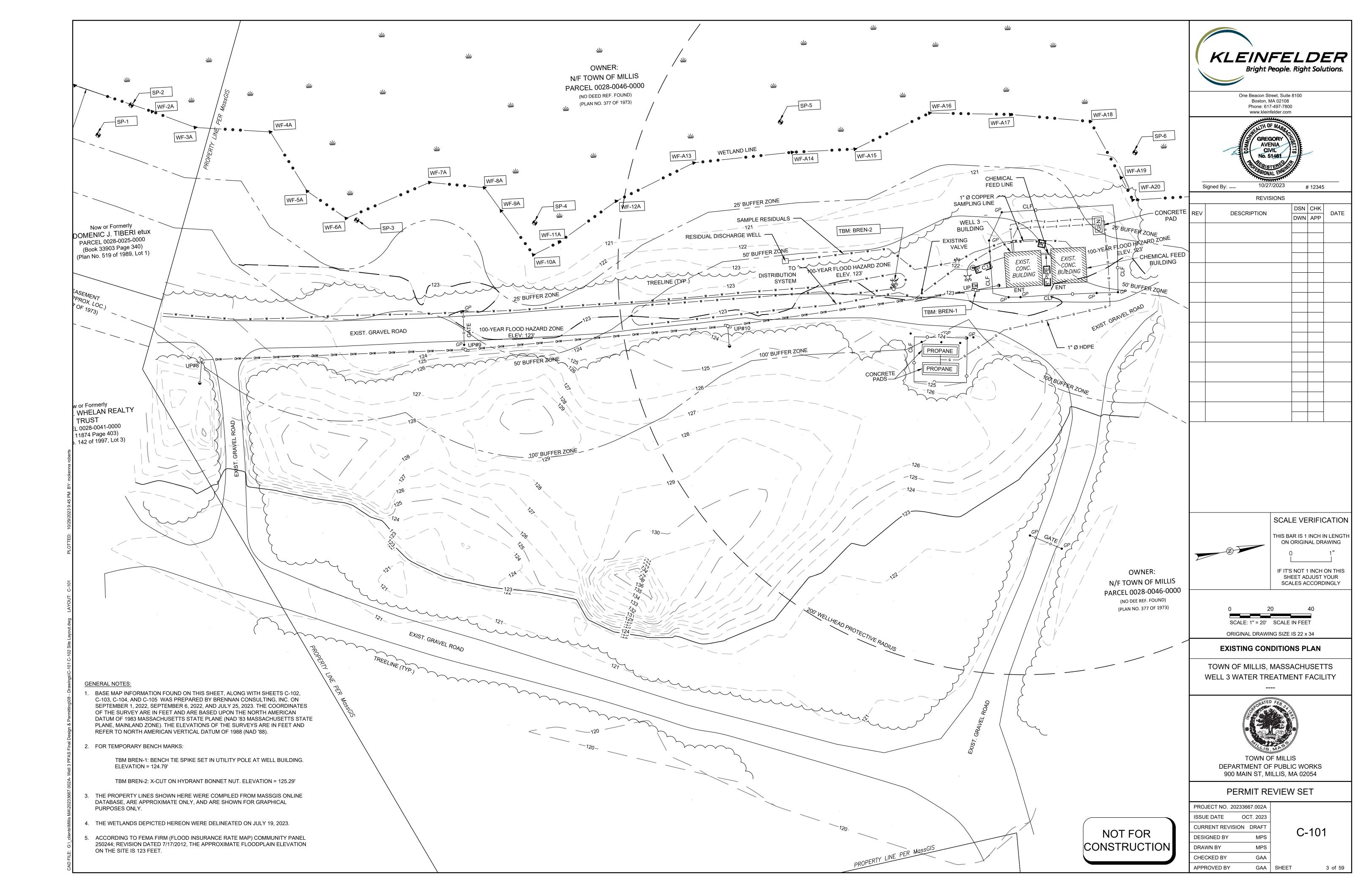
PROJECT NO. 20	233667.002A	
ISSUE DATE	OCT. 2023	
CURRENT REVIS	ION -	
DESIGNED BY	ТВ	
DRAWN BY	MR	
CHECKED BY	ТВ	
APPROVED BY	ABB	

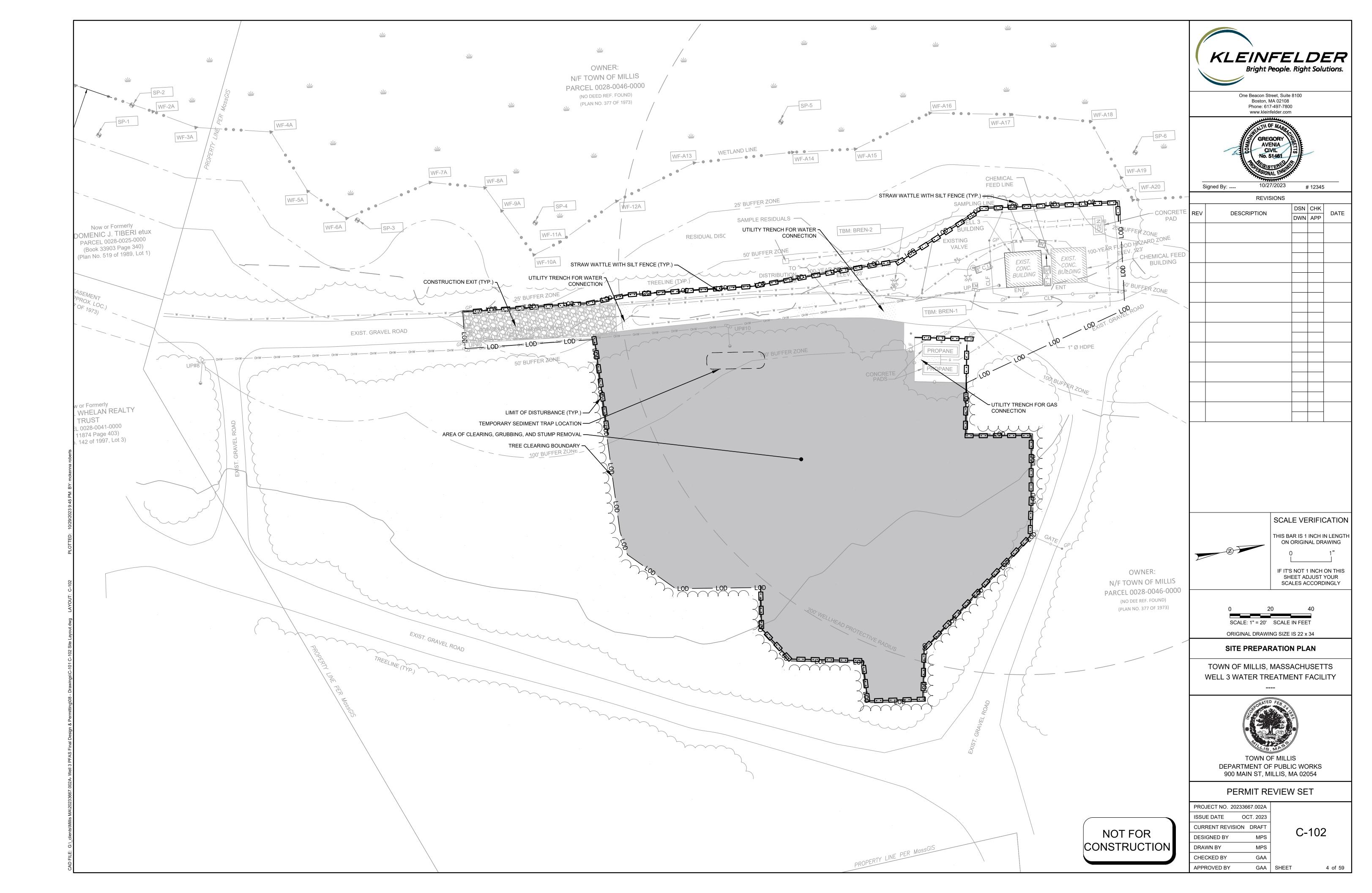

G-001

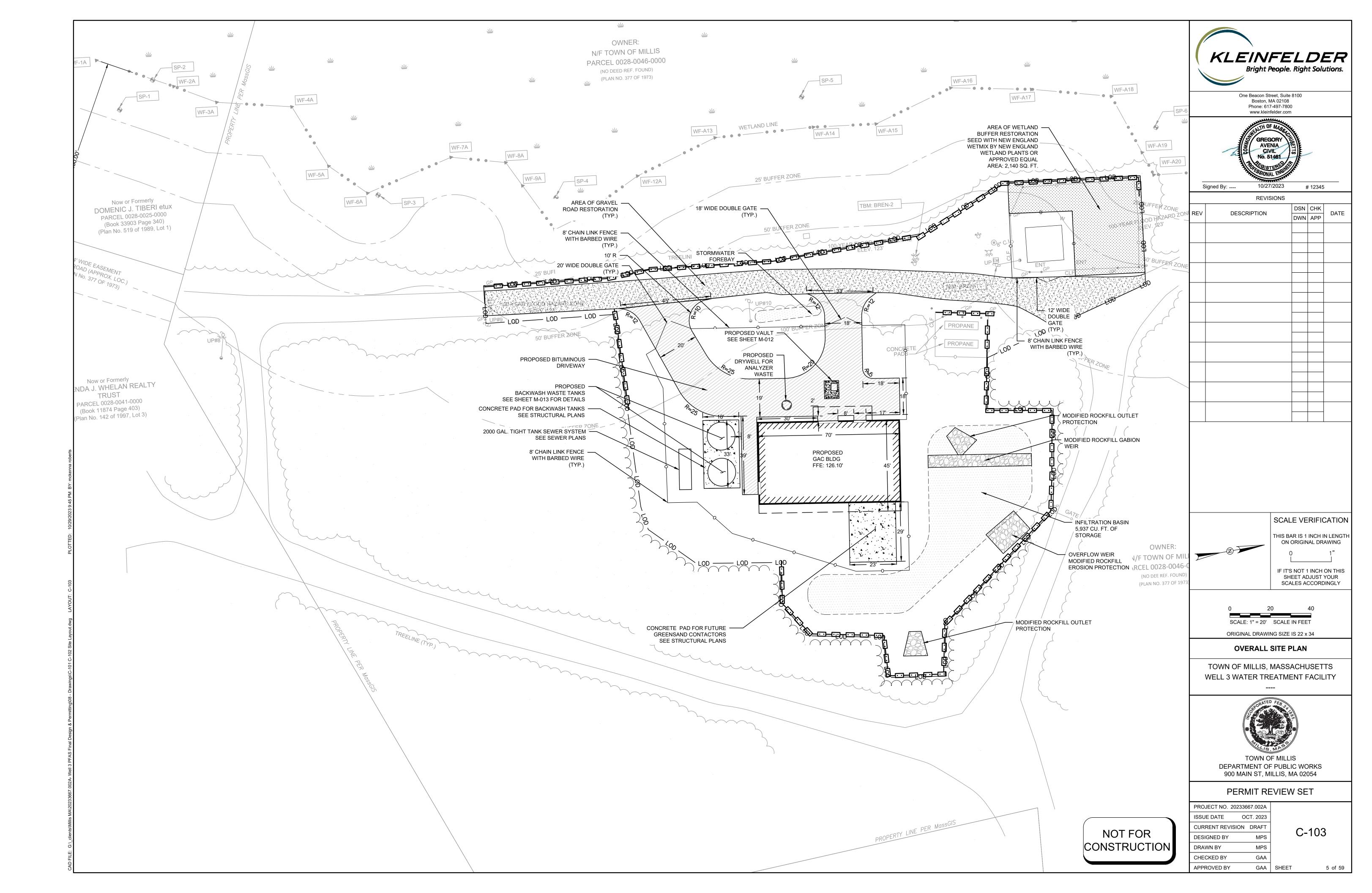

2 of 59

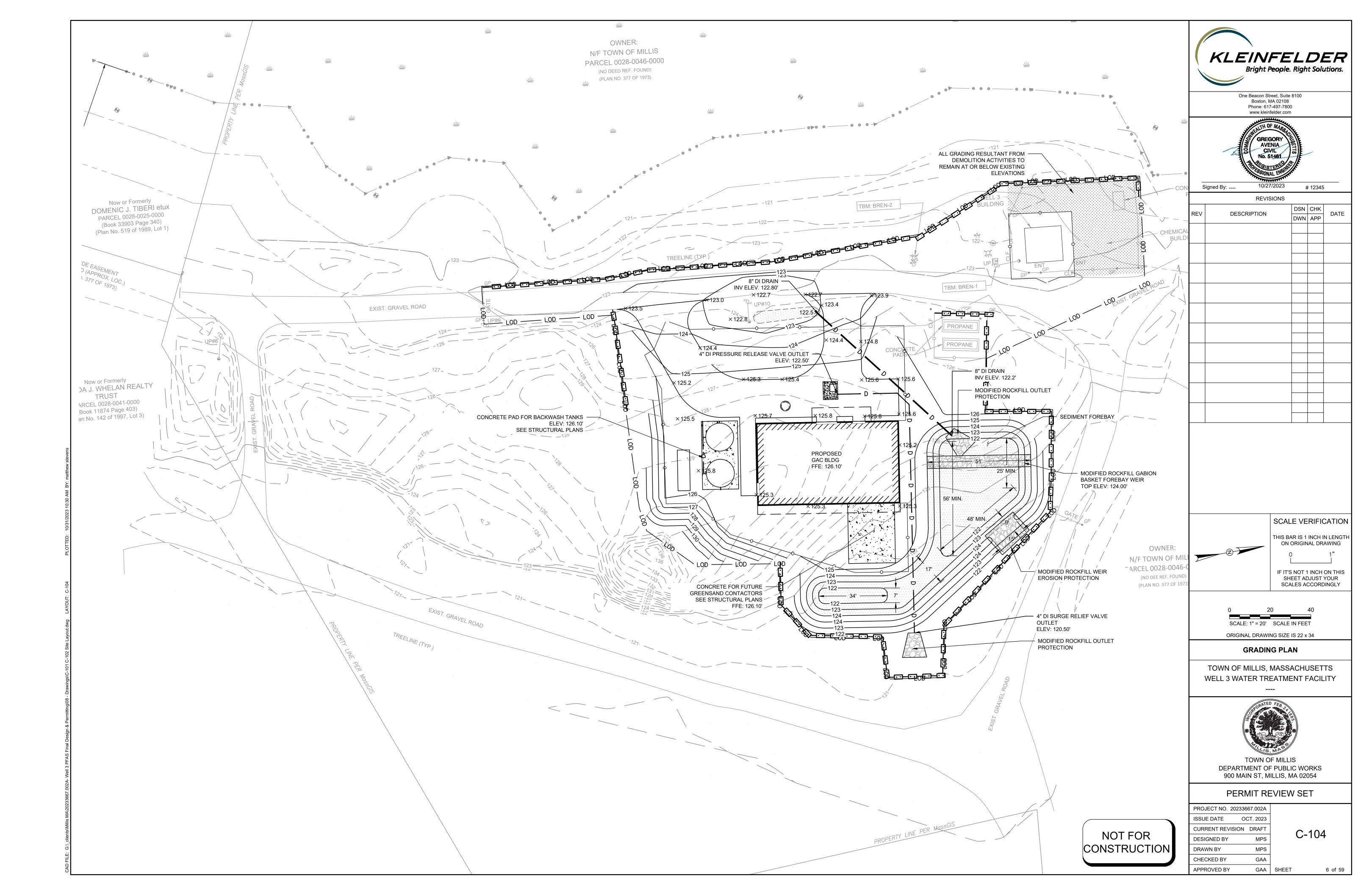


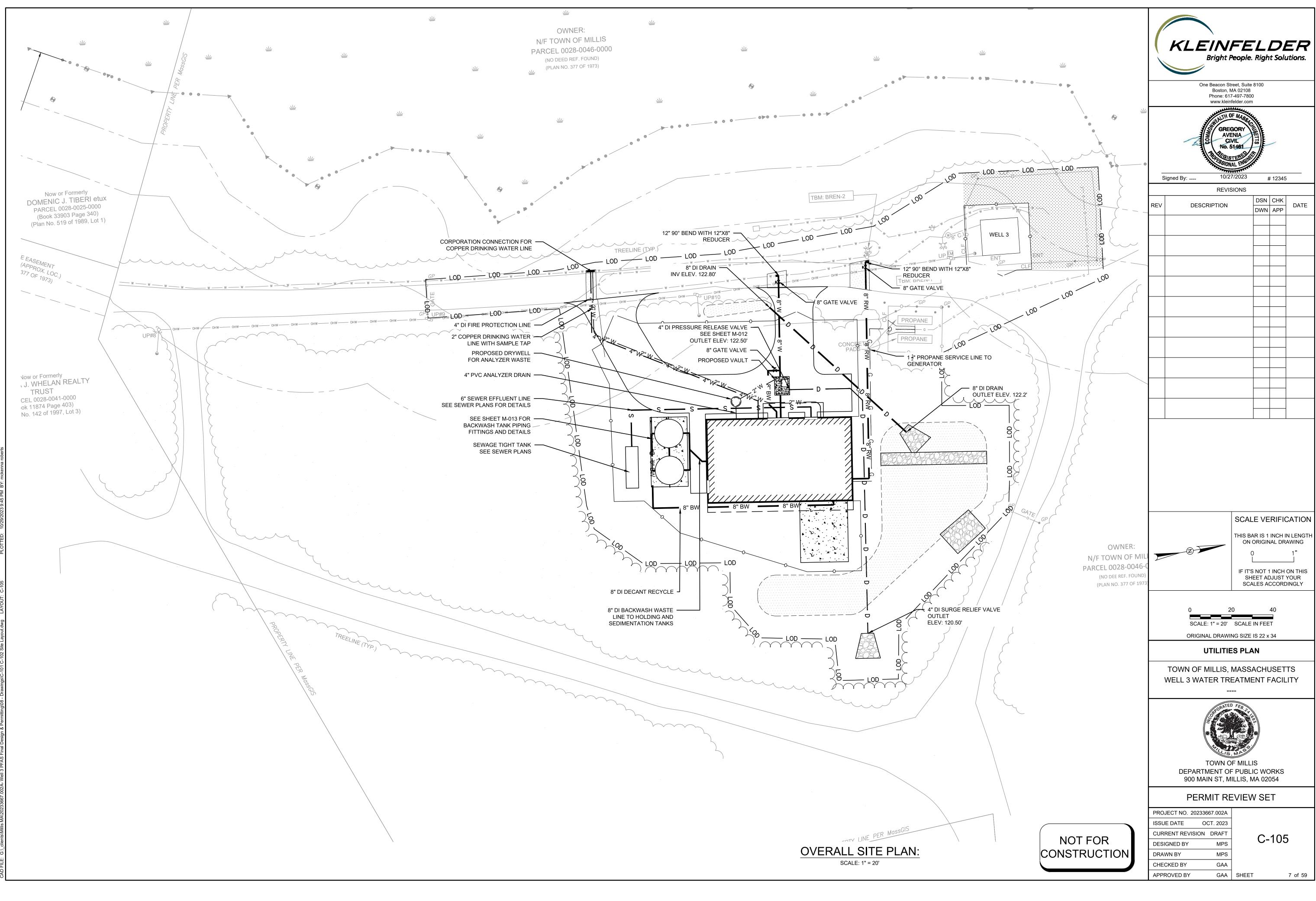


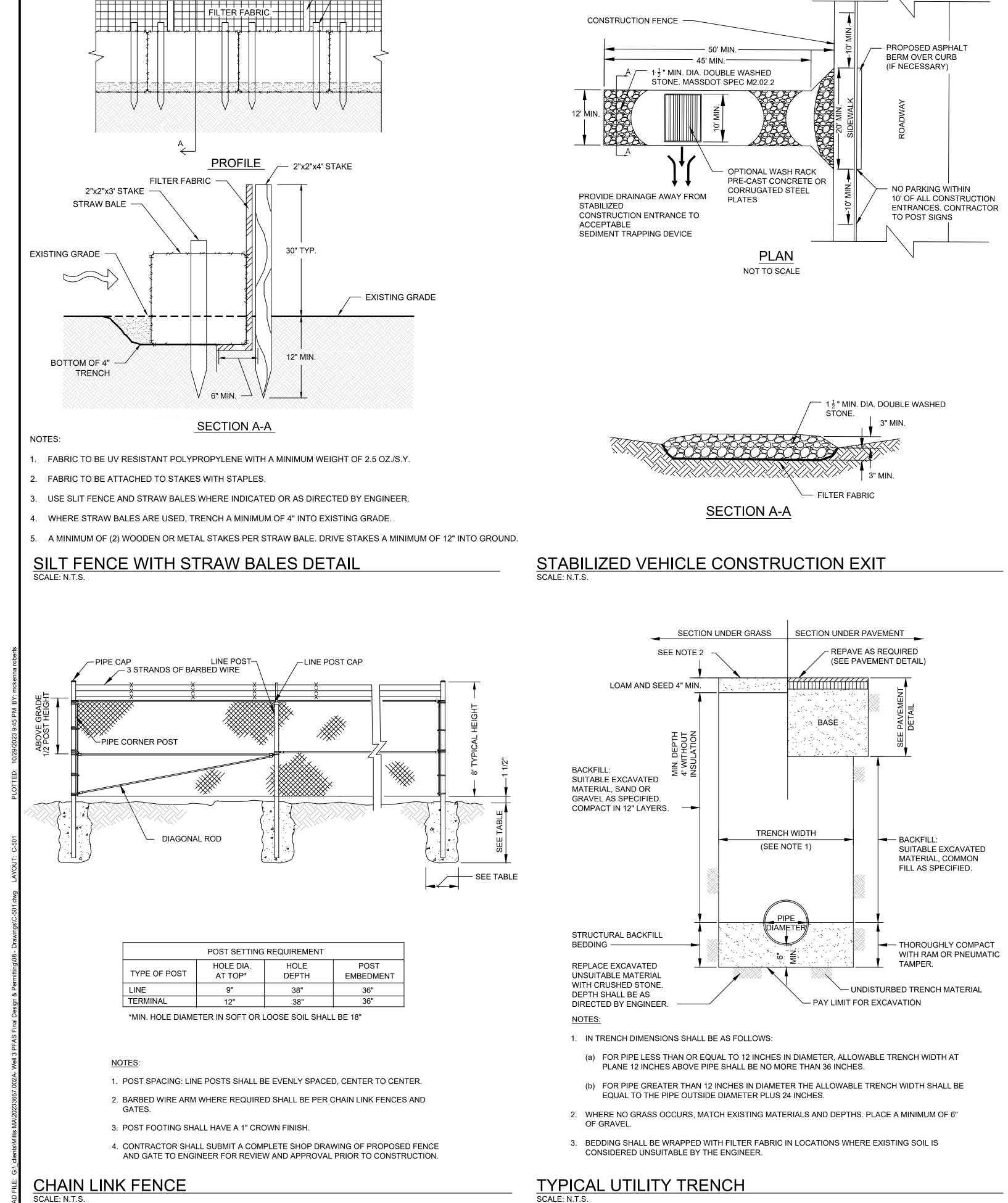


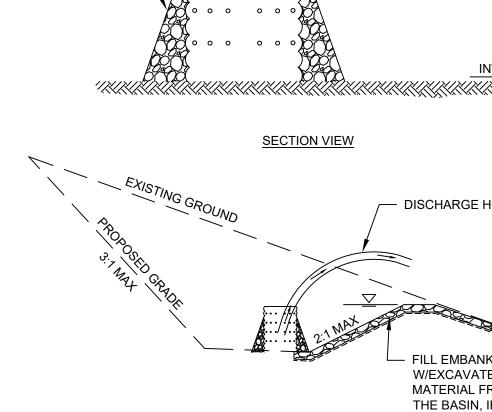












· 10'-0" MAX.

2"x2"x4' STAKE /--- 2"x2"x3' STAKE

- 1. TRAP CAPACITY: TEMPORARY SEDIMENT TRAP 134 CY/CONTRIBUTING ACI OF THIS VOLUME SHALL BE WET STORAGE. 2. TOTAL MIN. STORAGE VOLUME = 1" X CONTRIBUTING AREA.
- SEDIMENT SHALL BE REMOVED WHEN THE BASIN IS 1/2 FULL AT A MINIMUM. 4. THE BASIN SHALL REMAIN IN PLACE UNTIL THE SITE HAS BEEN STABILIZED WITH BUILDINGS, PAVEMENT, OR ESTABLISHED VEGETATION, AS APPLICABLE.

LONGITUDINAL SECTION

000

TOP OF RISER

– PERFORATED

HDPE RISER

BITUMINOUS CONCRETE PAVEMENT ROAD SURFACE — 4" THICK LOAM COMMON FILL OR EXISTING GRADE

0Er

TYPICAL LOAM AND SEED SECTION

N.T.S.

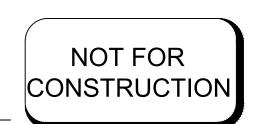
BBBBBBBB - 6" THICK LAYER OF 2" WASHED CRUSHED STONE · WRAP SIDES AND BOTTOM IN NONWOVEN GEOTEXTILE FABRIC COMMON FILL OR EXISTING SUBGRADE

8" DENSE GRADED

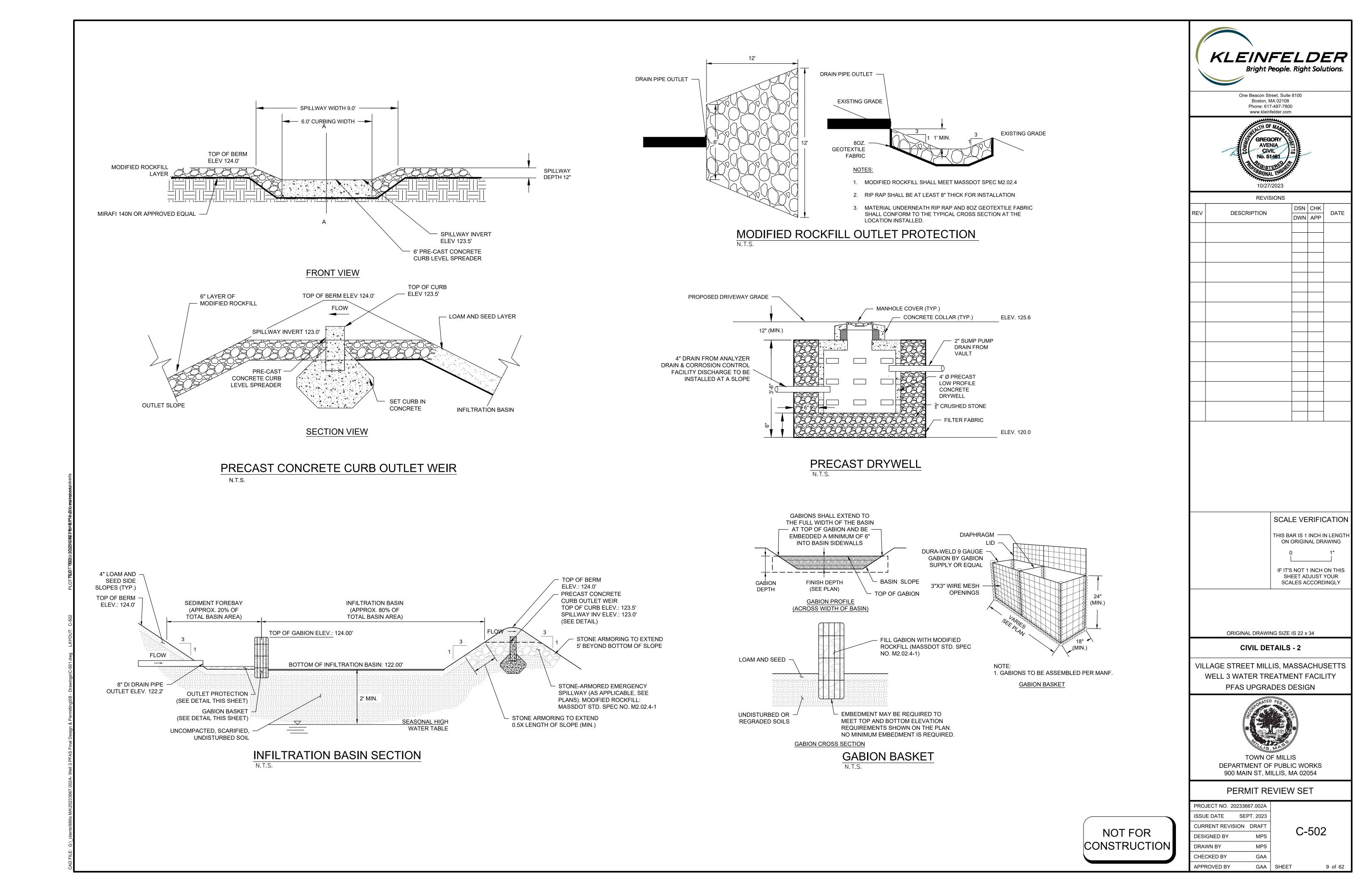
------ 2-1/2" BINDER COURSE

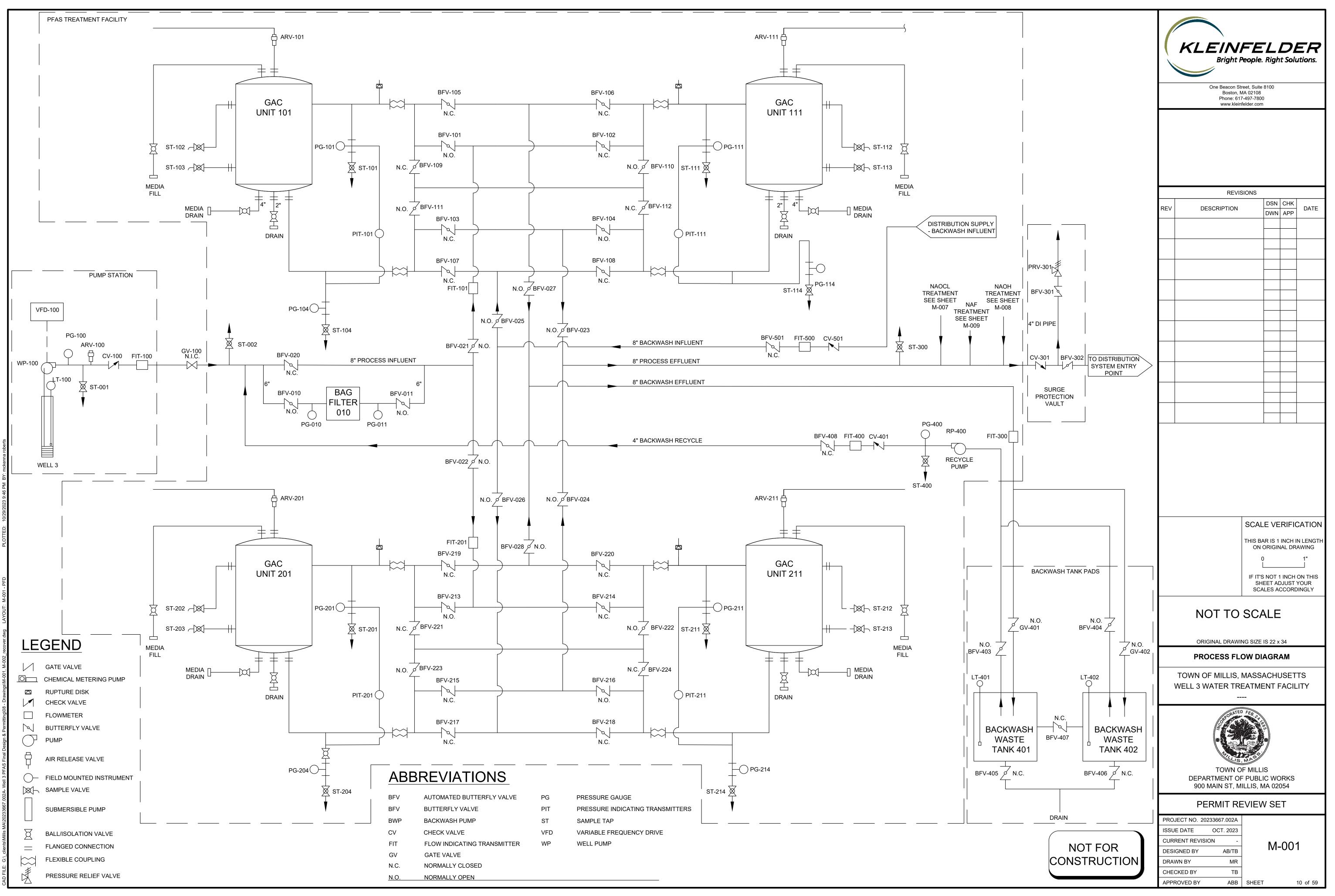
CRUSHED STONE

- COMPACTED SUBGRADE


— TACK COAT

TYPICAL GRAVEL ROAD RESTORATION SECTION N.T.S.


TEMPORARY SEDIMENT TRAP (TYP.)


SCALE: N.T.S.

<u>IVERT</u>	,
IOSE	LIMIT-OF-DISTURBANCE
KMENT ED ROM IF NEEDED	-
CRE AND 50)%

	KLEIN Bright F									
	One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com									
⊢	www.kleintelder.com									
	ST GREG	MASSAC IORY								
	AVE CIV No. 5		ITS	/						
	THOMAS IN THE STONE	EREPHE								
	- The second sec									
	REVIS	SIONS	DSN	СНК						
REV	DESCRIPTION		DWN	APP	DATE					
		SCAL								
					N LENGTH					
					AWING					
		()		1"					
		SH	EET AD	JUST						
		SCA	ALES A	UCORE	DINGLY					
	ORIGINAL DRAWI	NG SIZE	IS 22 x	34						
	CIVIL DE	TAILS	- 1							
	LAGE STREET MILL									
	WELL 3 WATER TRI PFAS UPGRA			_	.ITY					
 	RATE									
			85.							
	ANTI-LIS	MASS	A							
	TOWN O DEPARTMENT OF			ORKS						
	900 MAIN ST, M PERMIT RE	ILLIS, N	/IA 02	054						
PRO.	JECT NO. 20233667.002A	· · · • •		-						
ISSU	E DATE SEPT. 2023									
	RENT REVISION DRAFT GNED BY MPS		C-	50	1					
DRAV	WN BY MPS									
	CKED BY GAA ROVED BY GAA	SHEET	-		8 of 62					

VALVE SCHEDULE

TAG		DESCRIPTION	ТҮРЕ	SERVICE	ACTUATOR
BFV-010		BAG FILTER 010 INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-011	6"	BAG FILTER 010 EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-020		BAG FILTER BYPASS	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-021	8"	GAC 101/111 PROCESS INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-022	8"	GAC 201/211 PROCESS INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-023	8"	GAC 101/111 PROCESS EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-024	8"	GAC 201/211 PROCESS EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-025	8"	GAC 101/111 BACKWASH INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-026	8"	GAC 201/211 BACKWASH INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-027	8"	GAC 101/111 BACKWASH EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-028	8"	GAC 201/211 BACKWASH EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-301	4"	SURGE PROTECTION ISOLATION VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-302	8"	DISTRIBUTION SYSTEM CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-403	4"	BACKWASH TANK 401 EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-404	4"	BACKWASH TANK 402 EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-405	4"	BACKWASH TANK 401 DRAIN	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-406	4"	BACKWASH TANK 402 DRAIN	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-407	4"	BACKWASH TANK CONNECTION	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-408	4"	RECYCLE CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-101	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-102	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-103	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-104	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-105	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-106	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-107	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-108	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-109	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-110	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-111	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-112	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-213		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-214		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-215		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-216		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-217		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-218		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-219		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-220		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-221		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-222		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-223		GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-224		GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-501	8"	DISTRIBUTION SUPPLY BACKWASH INFLUENT CONTROL		OPEN/CLOSE	ELECTRIC
ARV-100		WELL 3 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-100		GAC-101 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-101		GAC-111 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-201		GAC-201 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-201		GAC-211 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
CV-100	2 6"	WELL 3 CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-100		SWING CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-301 CV-401	0 4''	BACKWASH WASTE PUMP CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-401 CV-501	4 8''				
PRV-301		BACKWASH WASTE PUMP CHECK VALVE	DOUBLE DOOR CHECK VALVE		
		SURGE PROTECTION WELL ISOLATION VALVE - NOT IN CONTRACT	PRESSURE RELEASE VALVE	PRESSURE RELEASE	 NANILIAL
GV-100	12"		GATE VALVE	OPEN/CLOSE	MANUAL
GV-401	4"	BACKWASH TANK 401 INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL

VALVE OPERATION SCHEDULE

						Tra	in 1											Tra	in 2						BW Supply
	ABV-101	ABV-102	ABV-103	ABV-104	ABV-105	ABV-106	ABV-107	ABV-108	ABV-109	ABV-110	ABV-111	ABV-112	ABV-213	ABV-214	ABV-215	ABV-216	ABV-217	ABV-218	ABV-219	ABV-220	ABV-221	ABV-222	ABV-223	ABV-224	ABV-051
Series Flow 101 to 111 & 201 to 211	Open	Closed	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open	Open	Closed	Open	Closed	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open	Open	Closed	Closed
Series Flow 111 to 101 & 211 to 201	Closed	Open	Open	Closed	Closed	Closed	Closed	Closed	Open	Closed	Closed	Open	Closed	Open	Open	Closed	Closed	Closed	Closed	closed	Open	Closed	Closed	Open	Closed
Backwash 101	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Open																
Backwash 111	Closed	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Open															
Filter To Waste 101	Open	Closed	Closed	Closed	Closed	Open	Closed	Closed	Closed	Open	Open	Closed													
Filter to Waste 111	Closed	Open	Closed	Closed	Open	Closed	Closed	Closed	Open	Closed	Closed	Open	Closed												
Backwash 201	Closed	Open	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open															
Backwash 211	Closed	Open	Closed	Open	Closed	Closed	Closed	Closed	Open																
Filter To Waste 201	Closed	Open	Closed	Closed	Closed	Closed	Closed	Closed	Open	Closed	Open	Open	Closed	Closed											
Filter to Waste 211	Closed	Open	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Closed	Open	Closed												

SAMPLE TAP SCHEDULE

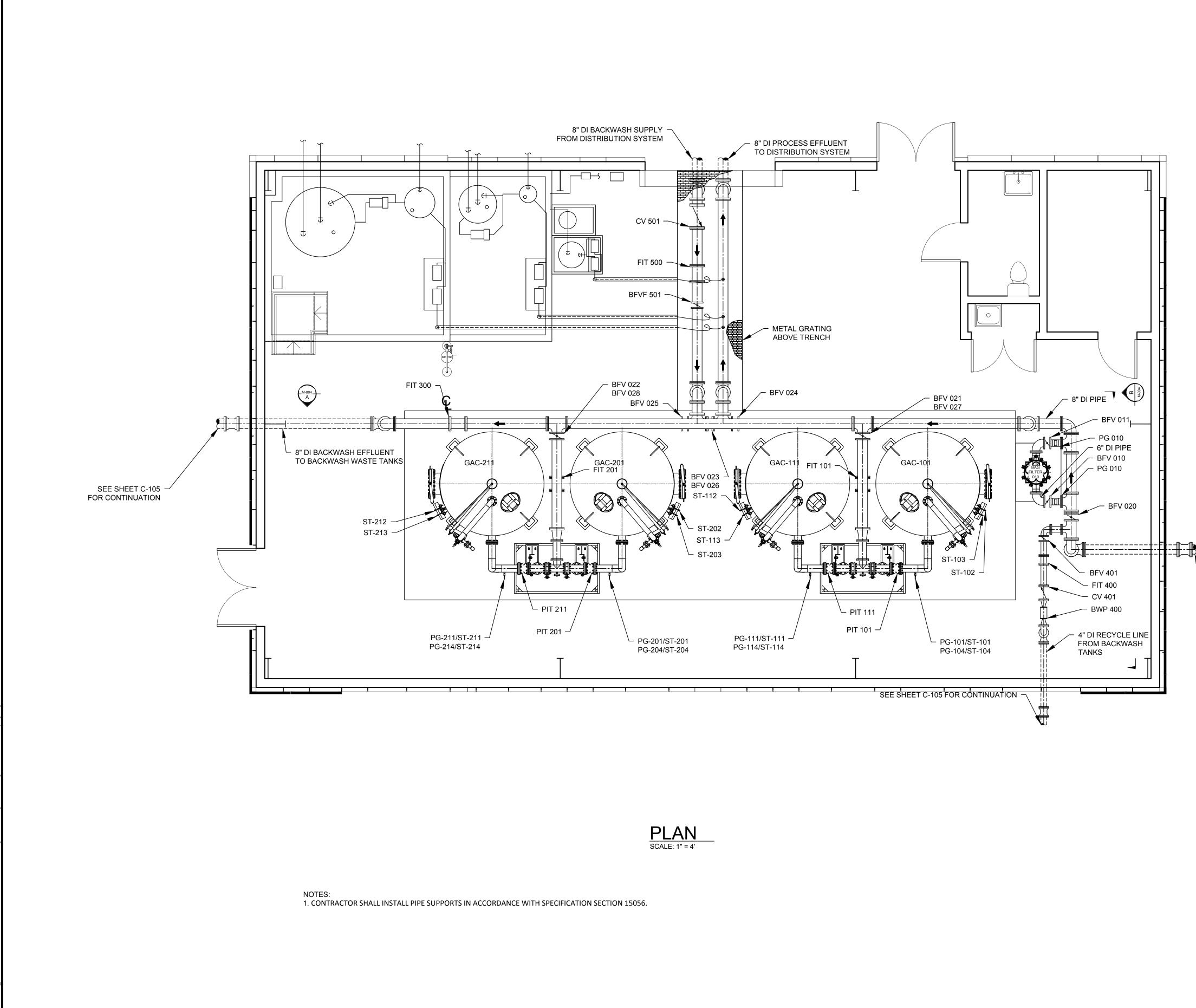
PLE TAP	DIAMETER	DESCRIPTION	ТҮРЕ	SERVICE	ACTUATO
T-001	1"	WELL 3 RAW WATER SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-002	1"	COMBINED INFLUENT SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-101	1/4"	SAMPLE TAP GAC 101 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-102	1/4"	SAMPLE TAP GAC 101 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-103	1/4"	SAMPLE TAP GAC 101 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-104	1/4"	SAMPLE TAP GAC 101 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-111	1/4"	SAMPLE TAP GAC 111 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-112	1/4"	SAMPLE TAP GAC 111 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-113	1/4"	SAMPLE TAP GAC 111 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-114	1/4"	SAMPLE TAP GAC 111 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-201	1/4"	SAMPLE TAP GAC 201 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-202	1/4"	SAMPLE TAP GAC 201 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-203	1/4"	SAMPLE TAP GAC 201 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-204	1/4"	SAMPLE TAP GAC 201 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-211	1/4"	SAMPLE TAP GAC 211 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-212	1/4"	SAMPLE TAP GAC 211 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-213	1/4"	SAMPLE TAP GAC 211 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-214	1/4"	SAMPLE TAP GAC 211 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-300	1"	PRE-CHEMICAL FEED SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
T-400	1"	RECYCLE SUPPLY SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL

PUMP SCHEDULE								
TAG	PUMP NAME	LOCATION	QUANTITY	ТҮРЕ				
WP-100	WELL 3 MOTOR/PUMP	WELL 3	1	VERTICAL TURBINE				
RP-400	BACKWASH PUMP	GAC BUILDING	1	HORIZONTAL END SUCTION				
TP-600	NaOCL TRANSFER PUMP	GAC BUILDING	1	MAGNETIC DRIVE				
TP-610	NaOH TRANSFER PUMP	GAC BUILDING	1	MAGNETIC DRIVE				
CP-601	NaOCL METERING PUMP 1	GAC BUILDING	1	PERISTALTIC				
CP-602	NaOCL METERING PUMP 2	GAC BUILDING	1	PERISTALTIC				
CP-611	NaOH METERING PUMP 1	GAC BUILDING	1	PERISTALTIC				
CP-612	NaOH METERING PUMP 2	GAC BUILDING	1	PERISTALTIC				
CP-621	FLUORINE METERING PUMP 1	GAC BUILDING	1	DIAPHRAGM				
CP-622	FLUORINE METERING PUMP 2	GAC BUILDING	1	DIAPHRAGM				

TAG	SIZE	SERVICE
FIT-100	8"	WELL 3 FLOW METER
FIT-101	6"	GAC 101/111 INFLUENT FLOWMETER
FIT-201	6"	GAC 201/211 INFLUENT FLOWMETER
FIT-300	6"	BACKWASH FLOWMETER
FIT-400	4"	RECYCLE FLOWMETER
FIT-500	6"	DISTRIBUTION SUPPLY BACKWASH INFLUENT FLOWMETER
FIT-620		FLUORINE FLOW METER
LT-100		WELL 3 LEVEL TRANSMITTER
LT-401		BACKWASH WASTE TANK 401 LEVEL TRANSMITTER
LT-402		BACKWASH WASTE TANK 402 LEVEL TRANSMITTER
LIT-603		NaOCL BULK TANK LEVEL INDICATING TRANSMITTER
LIT-604		NaOCL DAY TANK LEVEL INDICATING TRANSMITTER
LIT-613		NaOH BULK TANK LEVEL INDICATING TRANSMITTER
LIT-614		NaOH DAY TANK LEVEL INDICATING TRANSMITTER
PG-010	1"	INLET FOR BAG FILTER 010
PG-011	1"	OUTLET FOR BAG FILTER 010
PG-100	1"	WELL 3 PRESSURE GAUGE
PG-101	1/4"	GAC 101 INFLUENT PRESSURE GAUGE
PG-104	1/4"	GAC 101 EFFLUENT PRESSURE GAUGE
PIT-101	1/4"	GAC 101 DIFFERENTIAL PRESSURE TRANSDUCER
PG-111	1/4"	GAC 111 INFLUENT PRESSURE GAUGE
PG-114	1/4"	GAC 111 EFFLUENT PRESSURE GAUGE
PIT-111	1/4"	GAC 111 DIFFERENTIAL PRESSURE TRANSDUCER
PG-201	1/4"	GAC 201 INFLUENT PRESSURE GAUGE
PG-204	1/4"	GAC 201 EFFLUENT PRESSURE GAUGE
PIT-201	1/4"	GAC 201 DIFFERENTIAL PRESSURE TRANSDUCER
PG-211	1/4"	GAC 211 INFLUENT PRESSURE GAUGE
PG-214	1/4"	GAC 211 EFFLUENT PRESSURE GAUGE
PIT-211	1"	GAC 211 DIFFERENTIAL PRESSURE TRANSDUCER
PG-400	1/4"	RECYCLE SUPPLY PRESSURE GAUGE
PG-600	1/4"	NaOCL PRESSURE GAUGE
PG-610	1/4"	NaOH PRESSURE GAUGE

INSTRUMENTATION SCHEDULE

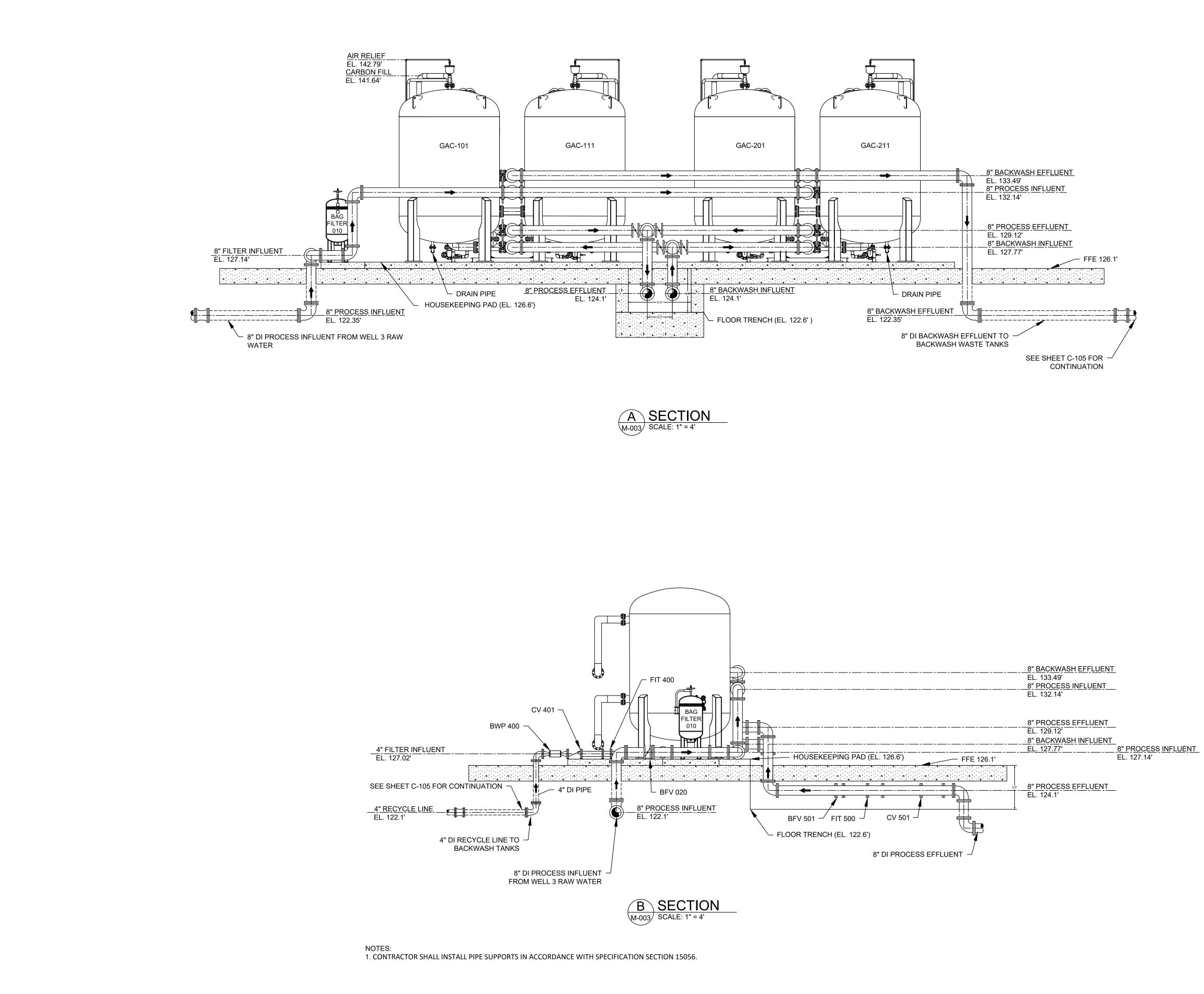
	REVISIONS								
	REVIS	SIONS	DON						
REV	DESCRIPTION		DSN DWN	CHK APP	DATE				
	SCALE VERIFICATION								
	THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1"								
		SH	EET AD	JUST	ON THIS YOUR DINGLY				
	ORIGINAL DRAWI	NG SIZE	IS 22 x	34					
	PROCESS EQUIP	MENT	SCH	EDU	LE				
	TOWN OF MILLIS, WELL 3 WATER TR								
	ORORATED	FEB.24							
			15.						
	TOWN O								
	DEPARTMENT OF 900 MAIN ST, M	ILLIS, N	/IA 02	054					
PRO	PERMIT RI		IV JE	_					
ISSU	IE DATE OCT. 2023 RENT REVISION -		R A	_∩∩'	0				


PROJECT NO.	20233667.002A	
ISSUE DATE	OCT. 2023	
CURRENT REV	ISION -	
DESIGNED BY	ABB	
DRAWN BY	MR	
CHECKED BY	TB	
APPROVED BY	ABB	SHEET

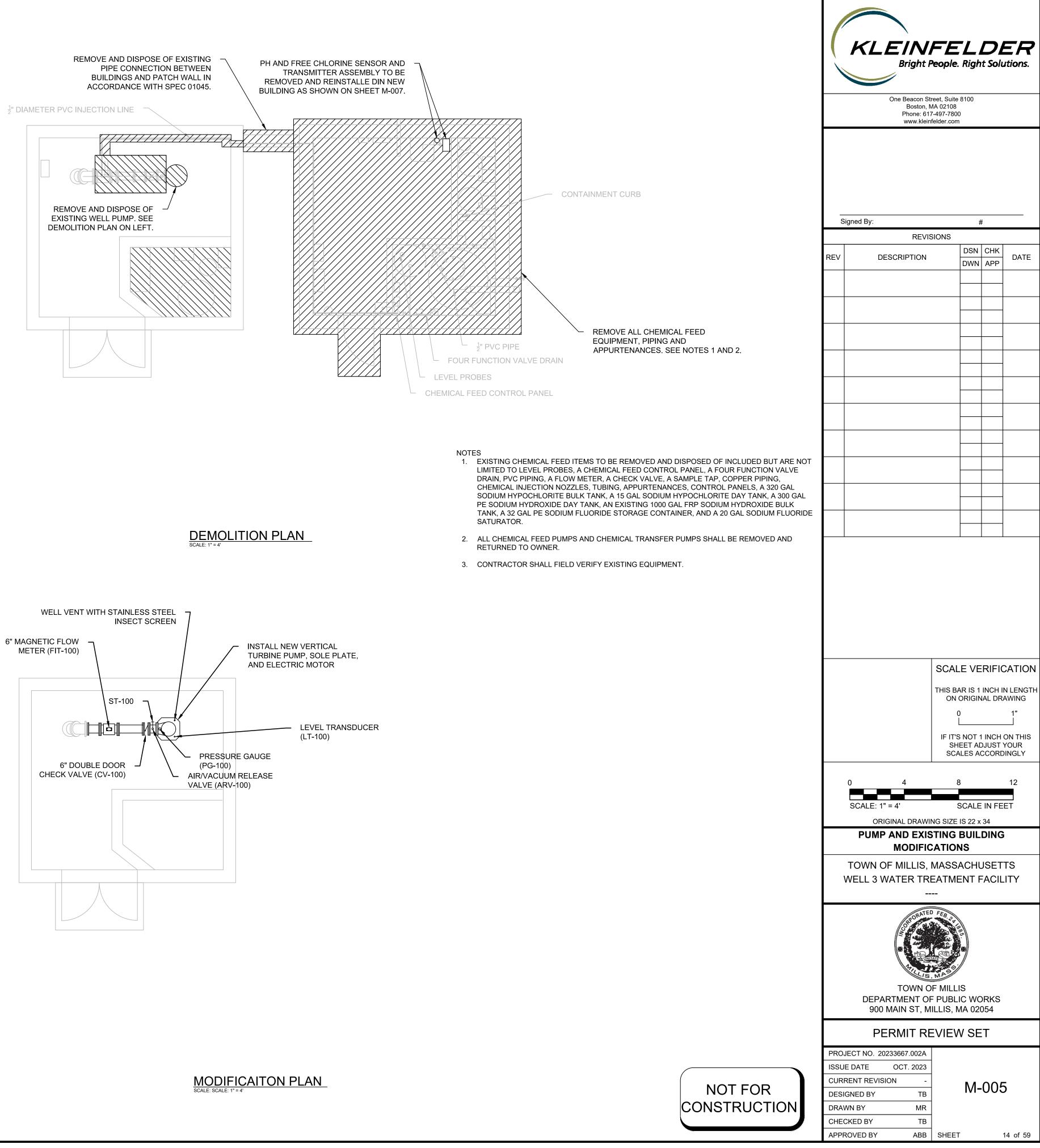
NOT FOR

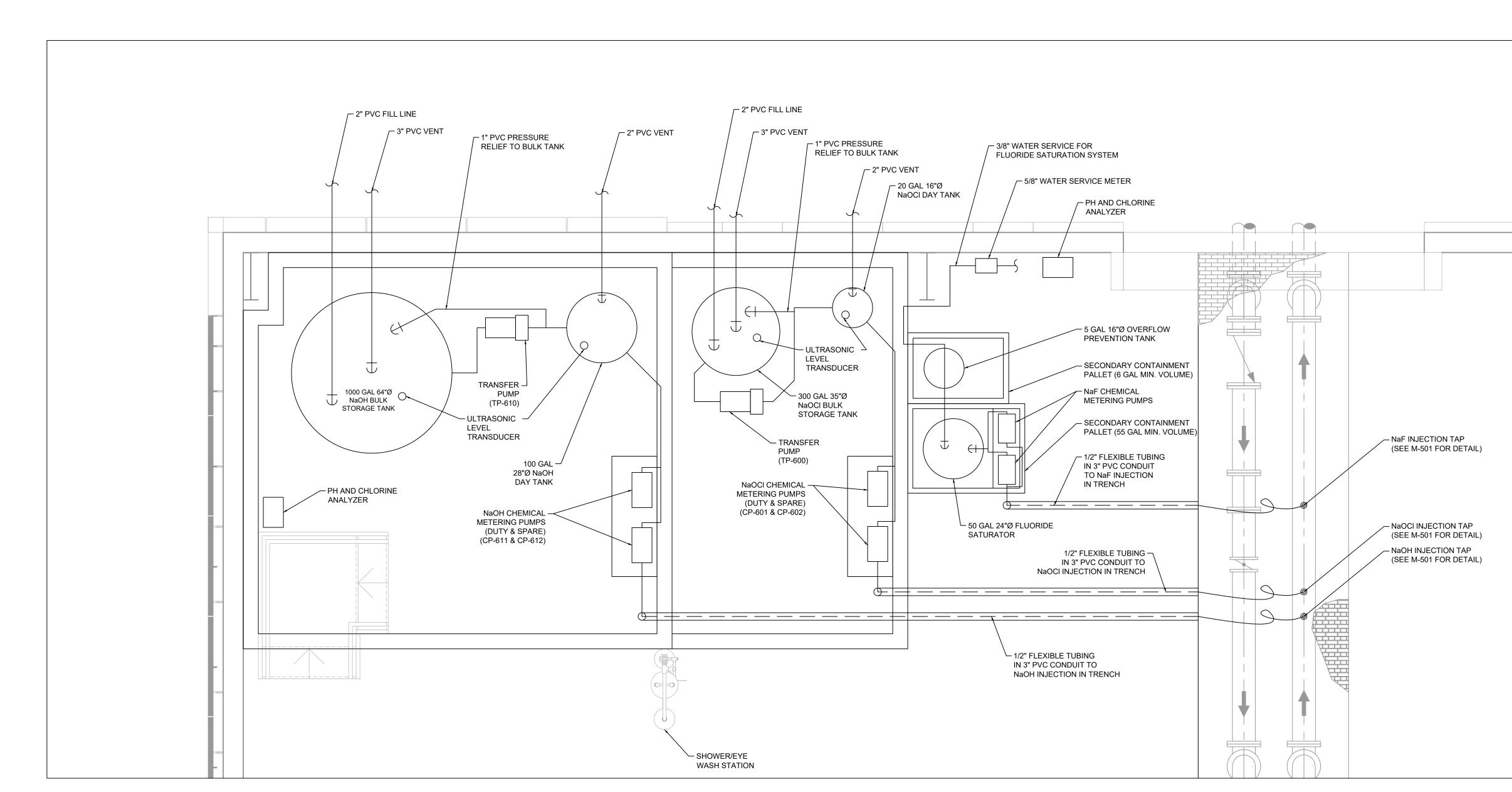
CONSTRUCTION

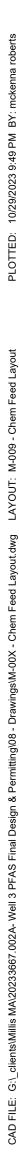
M-002


11_{of} 59

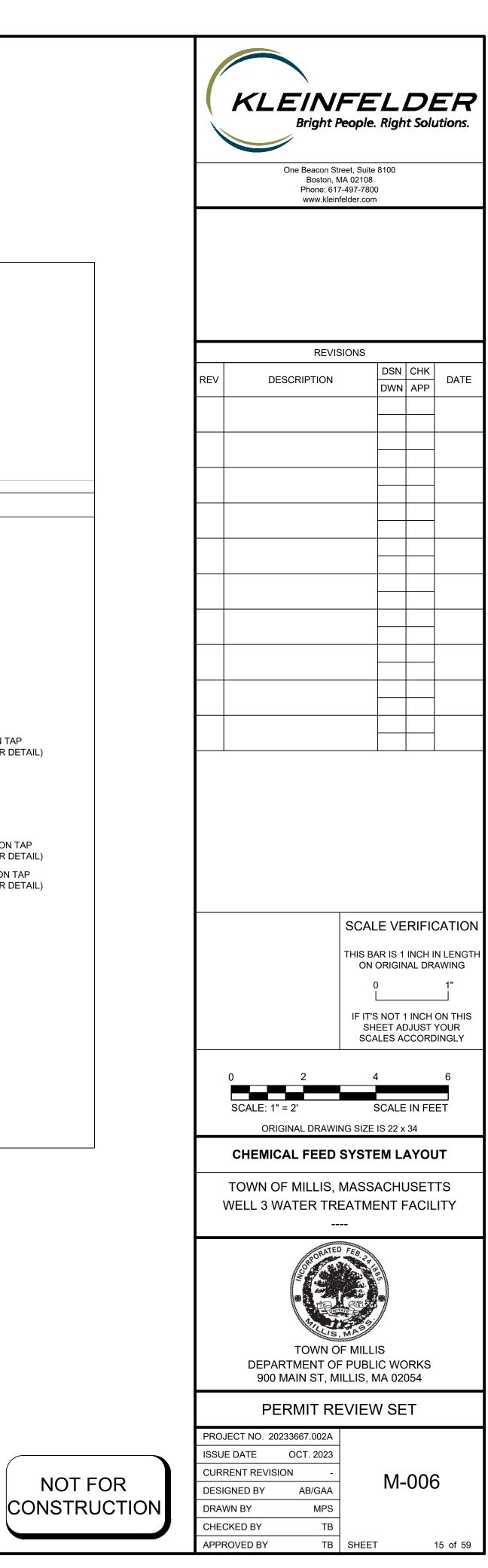
		KLE	EINI Bright P				
	One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800						
			www.kleint				
	-	igned By:					
		igned by:	REVIS	IONS			
	REV	DES	SCRIPTION		DSN DWN	CHK APP	DATE
							CATION
		Ň		ON (0 		IAL DR	AWING 1"
		Å		SHE	EET AD	JUST	ON THIS YOUR DINGLY
		0	4	8			12
		SCALE: 1" =				IN FEI	ΞT
			OCESS F				
	,	TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY 					
	OBRORATED FEB.						
			A STATE	MASS			
	TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054						
		PEF	RMIT RE	EVIEW	/ SE	Т	
\	ISSU	JECT NO. 2023 E DATE	OCT. 2023				
J	DESI	RENT REVISIO GNED BY WN BY	N - TB PF		M-	003	3
J	CHE	CKED BY ROVED BY	ТВ	SHEET			12 of 59

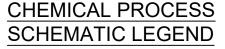

SEE SHEET C-105 FOR CONTINUATION

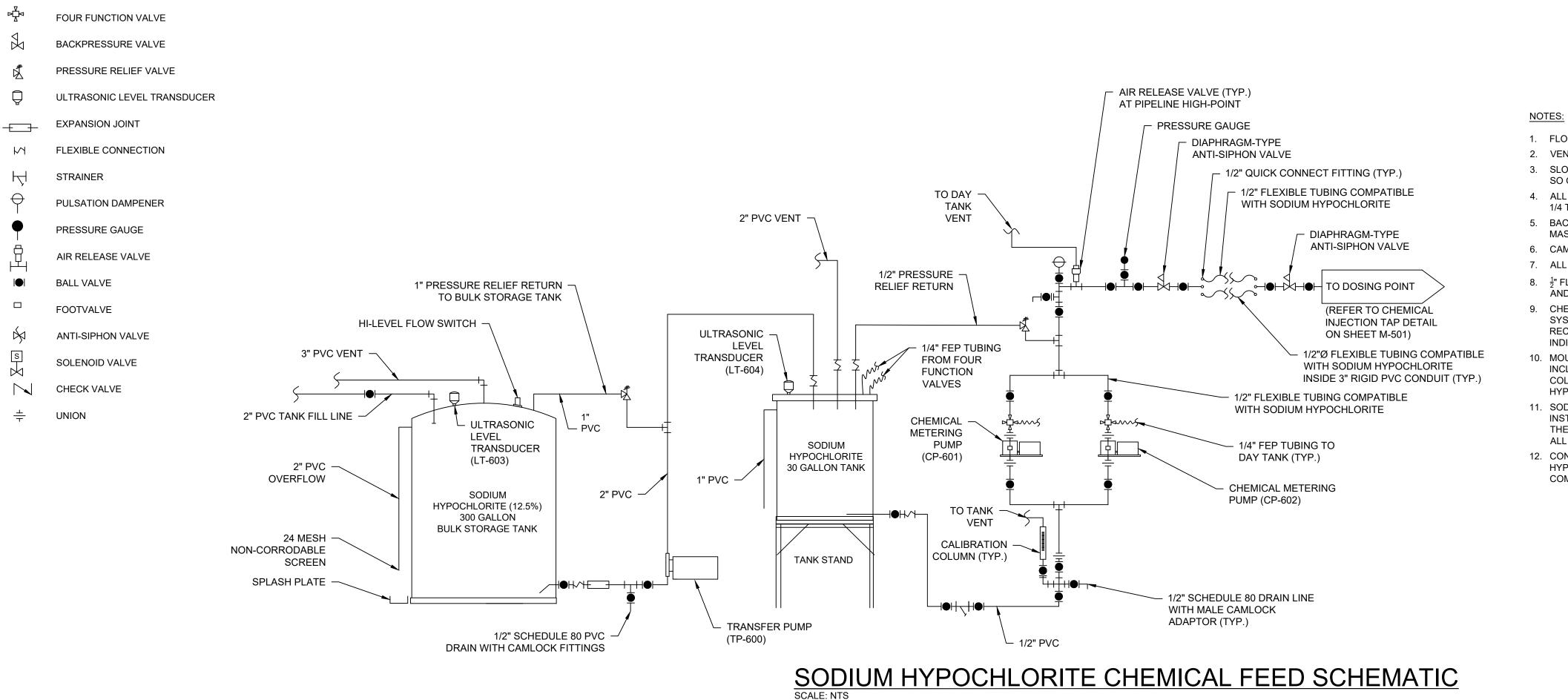

NOT FOR CONSTRUCTION

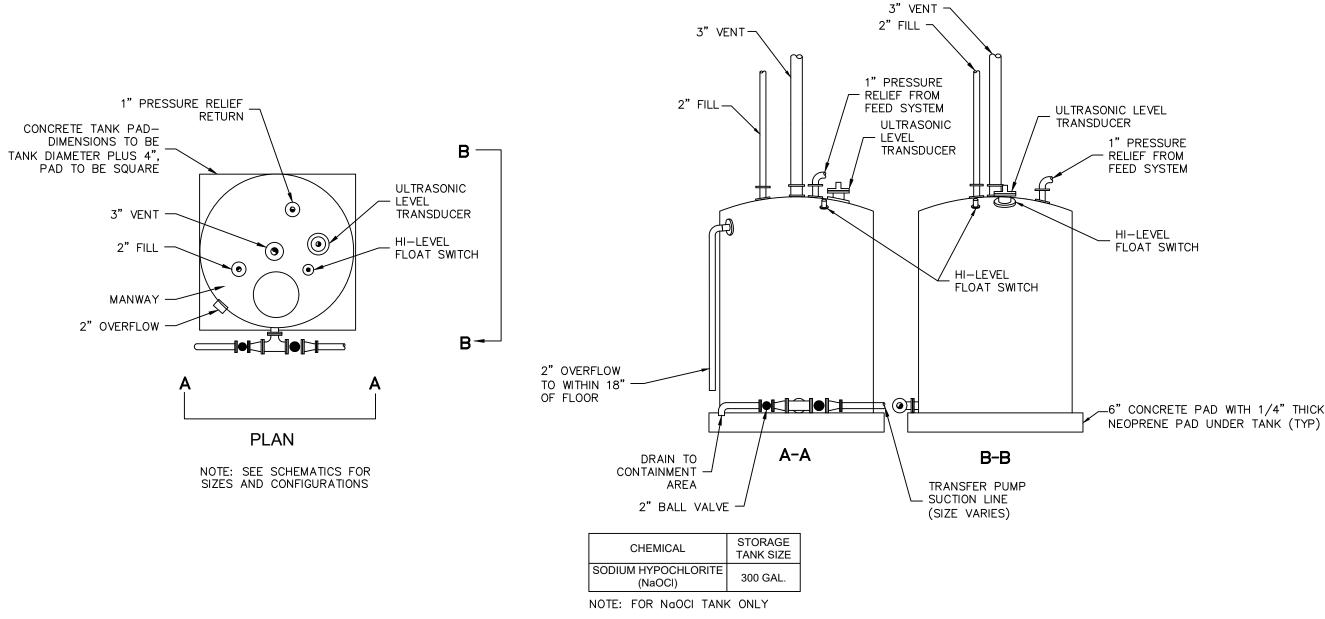


		FELDER People. Right Solutions.		
	One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800			
	www.kleinfelder.com			
	Signed By:	#		
	REVIS	SIONS		
	REV DESCRIPTION	DON APP DATE		
		SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY		
	0 4 SCALE: 1" = 4' ORIGINAL DRAWI	8 12 SCALE IN FEET NG SIZE IS 22 x 34		
	TOWN OF MILLIS,	S SECTION MASSACHUSETTS EATMENT FACILITY		
	DEPARTMENT OF	F MILLIS F PUBLIC WORKS ILLIS, MA 02054		
	900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET			
NOT FOR CONSTRUCTION	PROJECT NO. 20233667.002AISSUE DATEOCT. 2023CURRENT REVISION-DESIGNED BYTBDRAWN BYPF	M-004		
	CHECKED BY TB APPROVED BY	SHEET 13 of 59		








CHEMICAL FEED SYSTEM LAYOUT SCALE: 1" = 2'

SODIUM HYPOCHLORITE BULK CHEMICAL STORAGE TANK DETAIL SCALE: N.T.S.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

1. FLOODED SUCTION REQUIRED. 2. VENT GAS PRIOR TO METERING PUMPS.

3. SLOPE SUCTION LINE DOWN FROM TANK TO METERING PUMP SO GAS CANNOT ENTER PUMP HEAD.

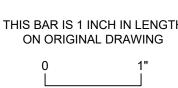
4. ALL BALL VALVES USED FOR SODIUM HYPOCHLORITE SHALL BE 1/4 TURN TRUE UNION VENTED BALL VALVES.

5. BACKPRESSURE VALVES SHALL BE INSTALLED IN SERIES PER MASSDEP GUIDELINES FOR SODIUM HYPOCHLORITE. 6. CAMLOCK FITTINGS SHALL BE FRP.

7. ALL FITTINGS AND ACCESSORIES SHALL BE TRUE UNION.

8. $\frac{1}{2}$ " FLEXIBLE TUBING SHALL EXTEND AT LEAST 2' FROM START AND END OF 3" RIGID PVC CHEMICAL CONDUIT.

9. CHEMICAL METERING PUMPS SHALL INCLUDE AN INTERLOCK SYSTEM THAT IS HARD WIRED OR USE A TWIST TYPE PLUG AND RECEPTACLE WITH PILOT LIGHT "ON OR ENERGIZED" INDICATOR TO HELP PREVENT OVERFEEDS.


10. MOUNTING PANELS FOR ALL CHEMICAL FEED EQUIPMENT, INCLUDING BUT LIMITED TO PUMPS, PIPING, CALIBRATION COLUMN, SHALL BE CHEMICALLY COMPATIBLE WITH SODIUM HYPOCHLORITE.

11. SODIUM HYPOCHLORITE CHEMICAL FEED SYSTEM SHALL BE INSTALLED ACCORDING TO THE REQUIREMENTS PROVIDED IN THE MASSDEP CHEMICAL FEED SYSTEM CHECKLIST AND/OR ALL MASSDEP GUIDELINES AND REGULATIONS.

12. CONTRACTOR TO SUPPLY INITIAL 300 GALLON FILL OF SODIUM HYPOCHLORITE (12.5%) BUNK TANK PRIOR TO START-UP AND COMMISSIONING.

	REVISIONS				
REV	DESCRIPTION		СНК	DATE	
REV	V DESCRIPTION	DWN	APP	DATE	



IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

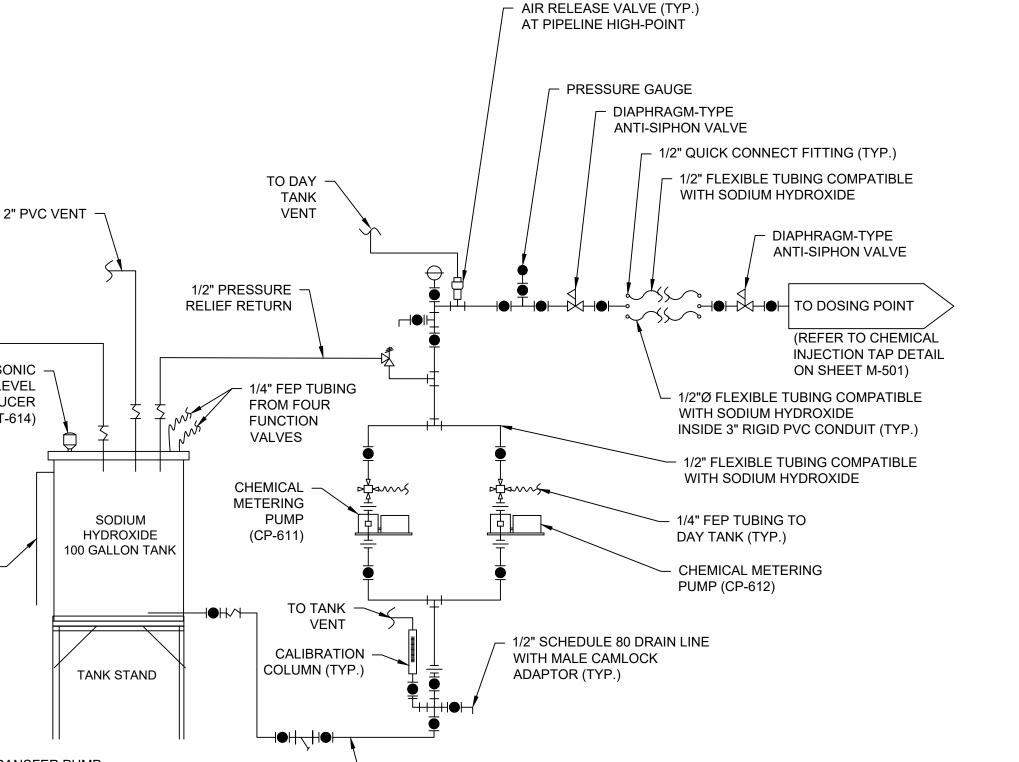
ORIGINAL DRAWING SIZE IS 22 x 34 SODIUM HYPOCHLORITE CHEMICAL FEED SCHEMATIC

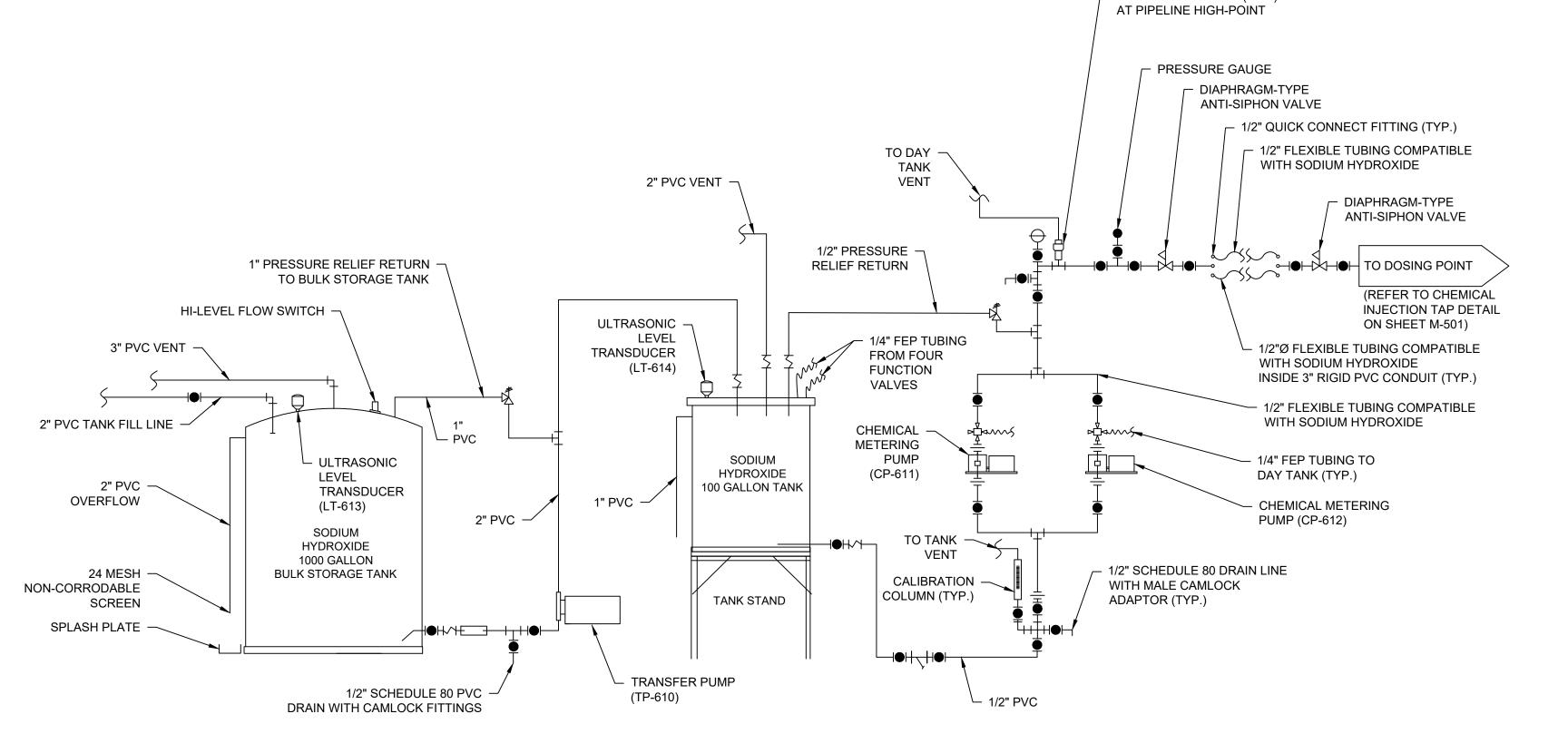
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054

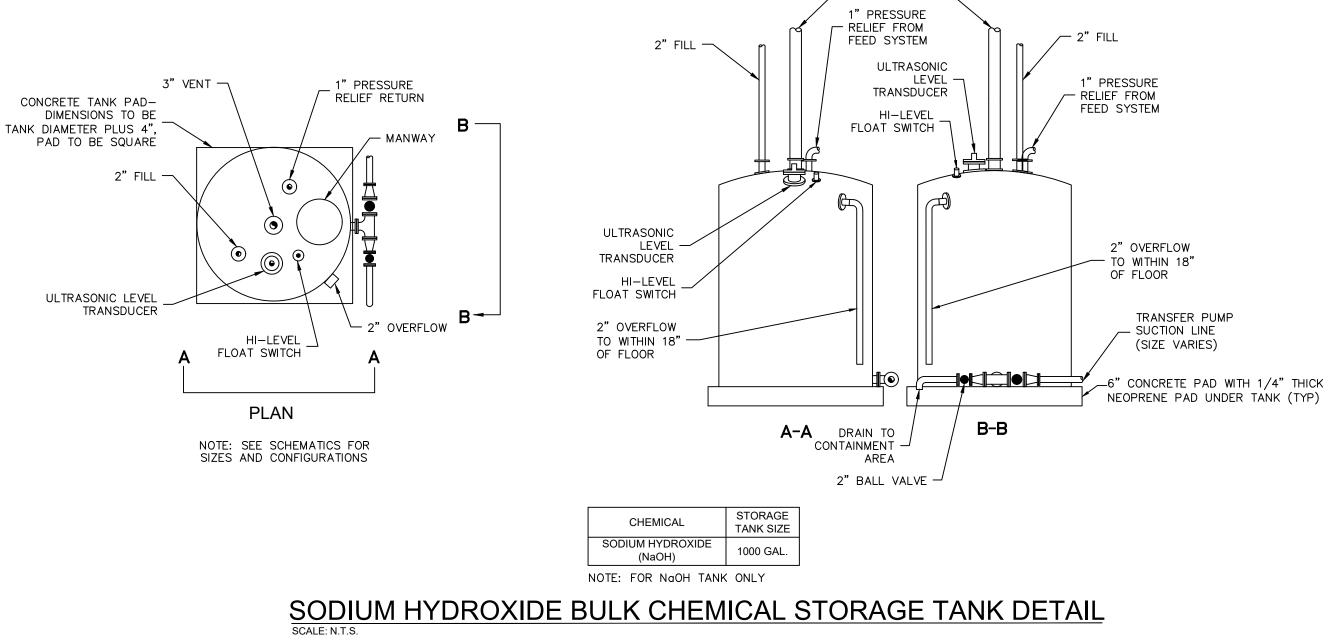
PERMIT REVIEW SET

SHEET


PROJECT NO. 2	0233667.002A
ISSUE DATE	OCT. 2023
CURRENT REVIS	SION -
DESIGNED BY	AB/GAA
DRAWN BY	MPS
CHECKED BY	ТВ
APPROVED BY	ТВ


-6" CONCRETE PAD WITH 1/4" THICK

NOT FOR CONSTRUCTION


16 of 59

M-007

SCALE: NTS

3" VENT

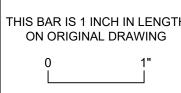
SODIUM HYDROXIDE CHEMICAL FEED SCHEMATIC

ELEVATION OF METERING PUMPS. 4. BACKPRESSURE VALVES SHALL BE INSTALLED IN SERIES PER MASSDEP GUIDELINES FOR SODIUM HYDROXIDE. 5. CAMLOCK FITTINGS SHALL BE FRP. 6. ALL FITTINGS AND ACCESSORIES SHALL BE TRUE UNION. 7. ¹/₂" FLEXIBLE TUBING SHALL EXTEND AT LEAST 2' FROM START AND END OF 3" RIGID PVC CHEMICAL CONDUIT. 9. CHEMICAL METERING PUMPS SHALL INCLUDE AN INTERLOCK SYSTEM THAT IS HARD WIRED OR USE A TWIST TYPE PLUG AND RECEPTACLE WITH PILOT LIGHT "ON OR ENERGIZED" INDICATOR TO HELP PREVENT OVERFEEDS. 10. MOUNTING PANELS FOR ALL CHEMICAL FEED EQUIPMENT, INCLUDING BUT LIMITED TO PUMPS, PIPING, CALIBRATION COLUMN, SHALL BE CHEMICALLY COMPATIBLE WITH SODIUM HYDROXIDE. 11. SODIUM HYDROXIDE CHEMICAL FEED SYSTEM SHALL BE INSTALLED ACCORDING TO THE REQUIREMENTS PROVIDED IN THE MASSDEP CHEMICAL FEED SYSTEM CHECKLIST AND/OR ALL MASSDEP GUIDELINES AND REGULATIONS.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

1. FLOODED SUCTION REQUIRED.

NOTES:


2. VENT GAS PRIOR TO METERING PUMPS.

3. ELEVATION OF BOTTOM OF DAY TANKS SHOULD MATCH THE

12. CONTRACTOR TO SUPPLY INITIAL 1000 GALLON FILL OF SODIUM HYDROXIDE BUNK TANK PRIOR TO START-UP AND COMMISSIONING.

	REVISIONS			
REV	DESCRIPTION		СНК	DATE
REV	DESCRIPTION	DWN	APP	DATE

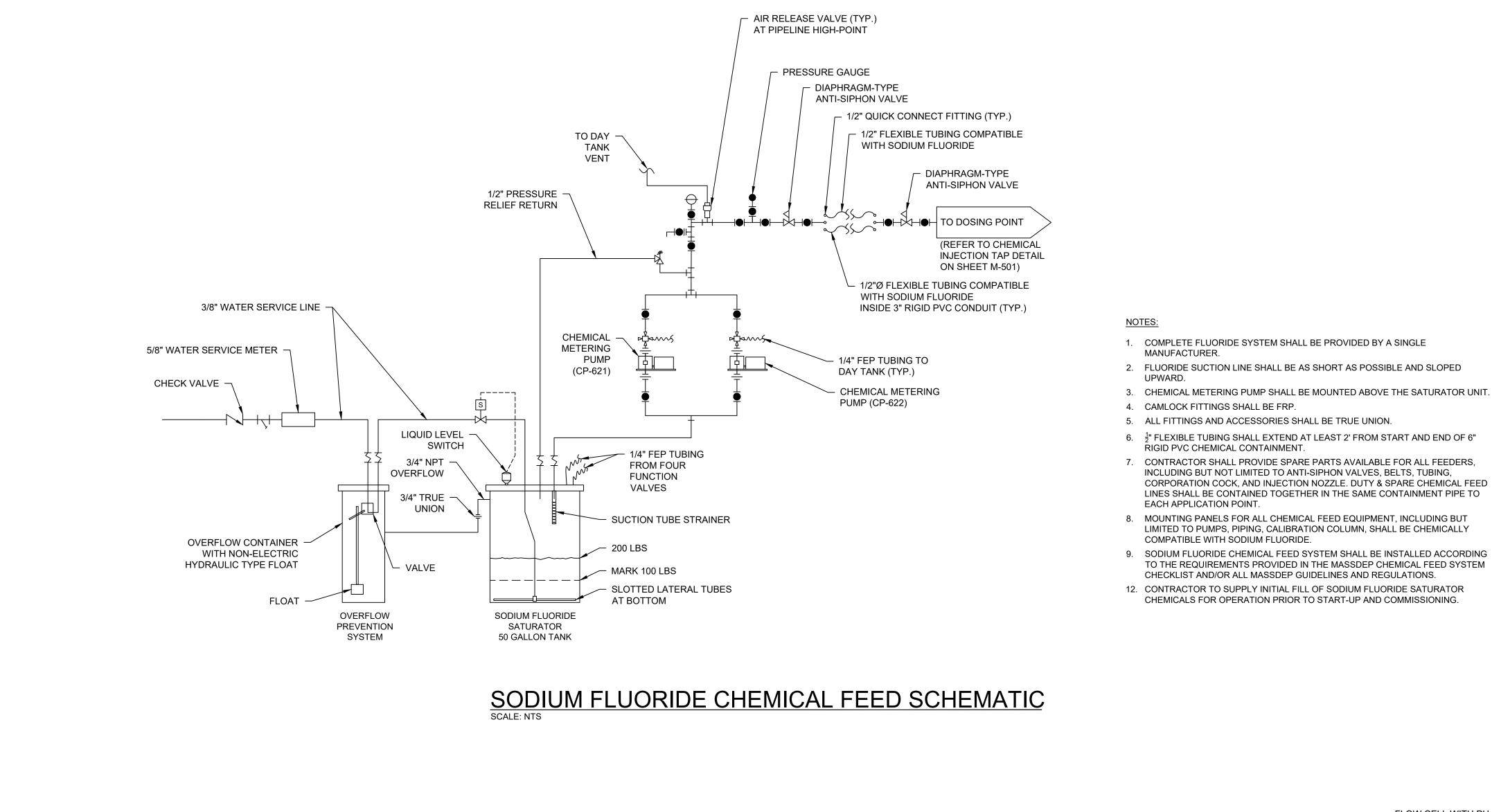
SCALE VERIFICATION

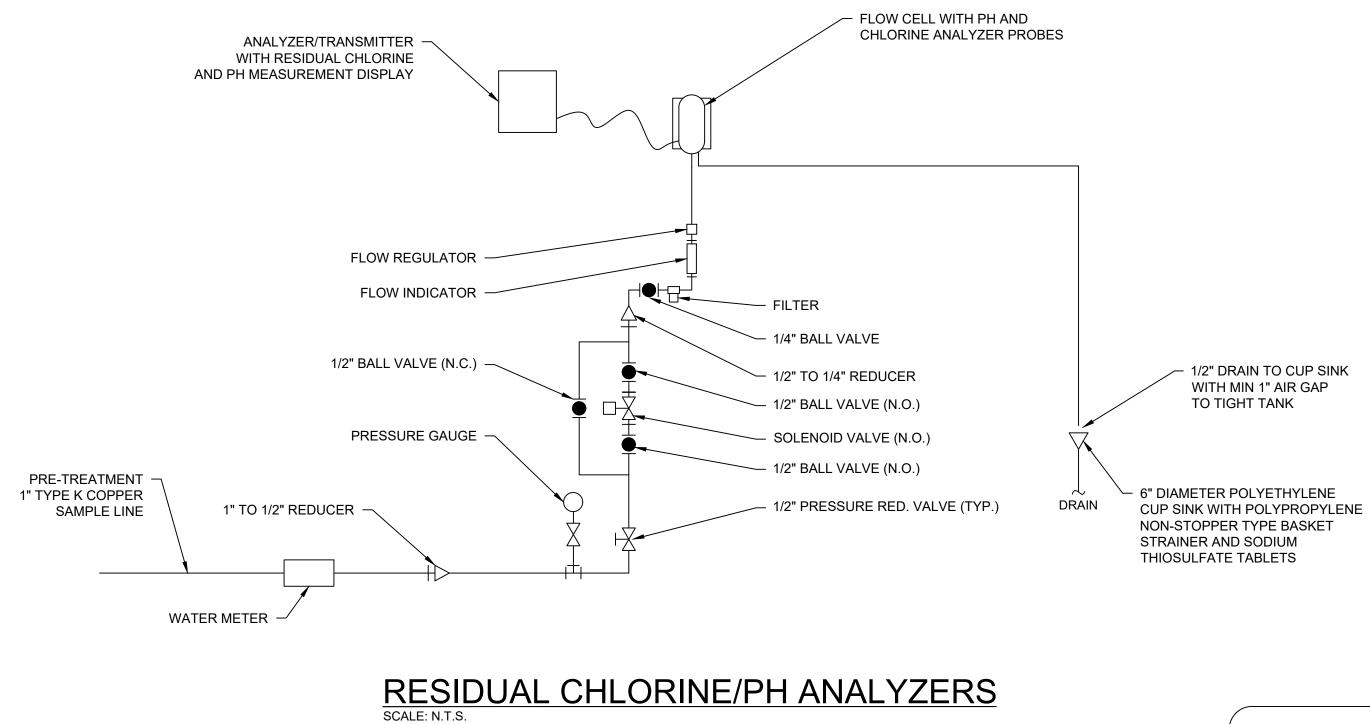
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34 SODIUM HYDROXIDE CHEMICAL FEED SCHEMATIC

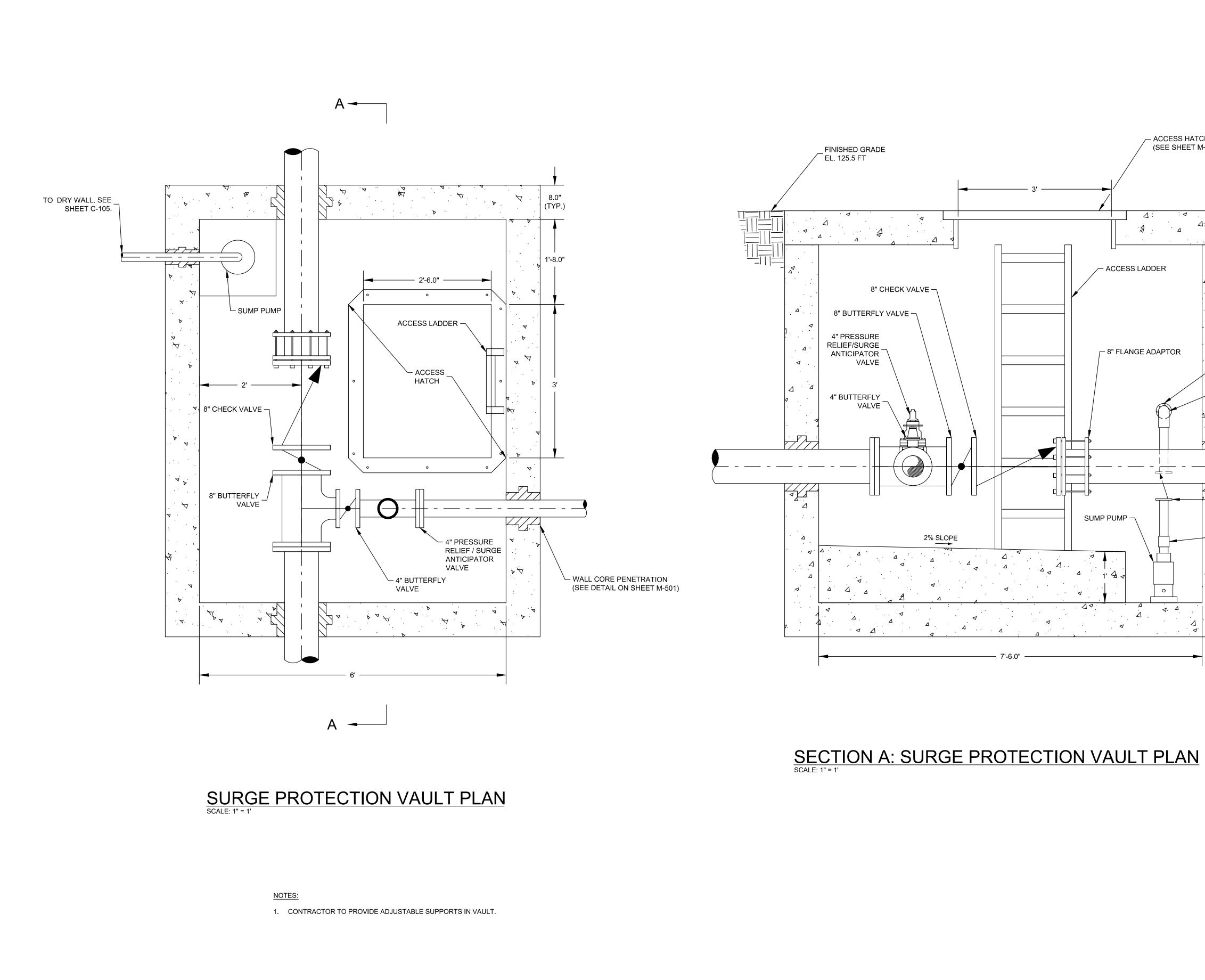
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

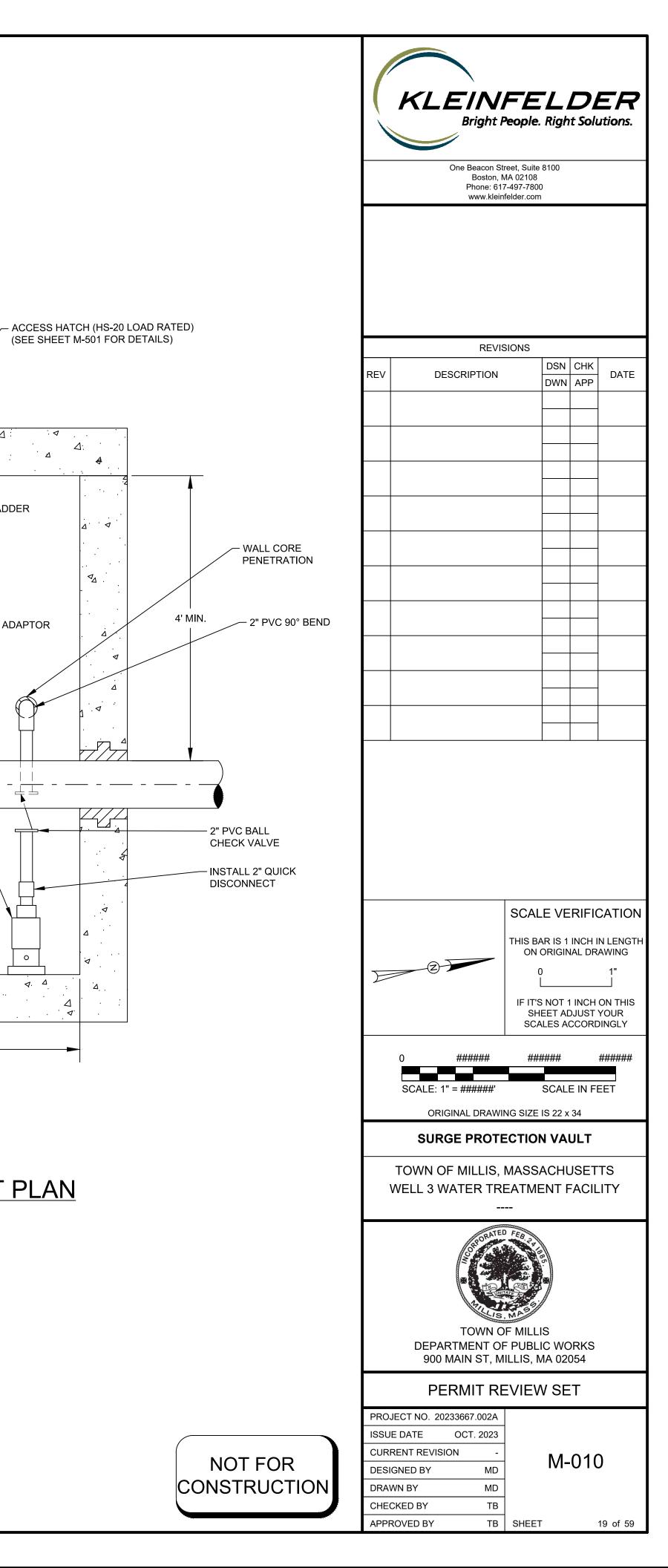
TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054

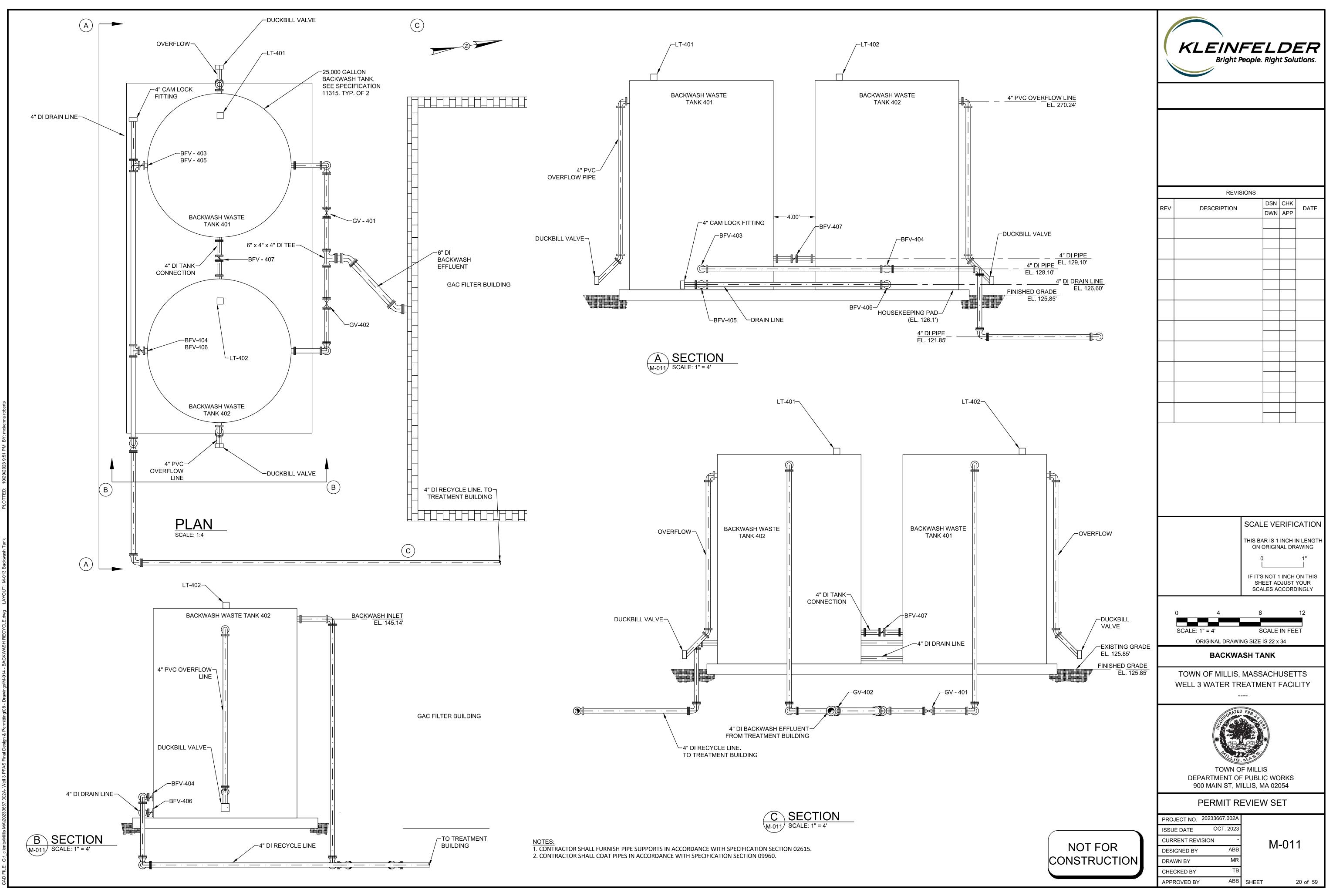

PERMIT REVIEW SET

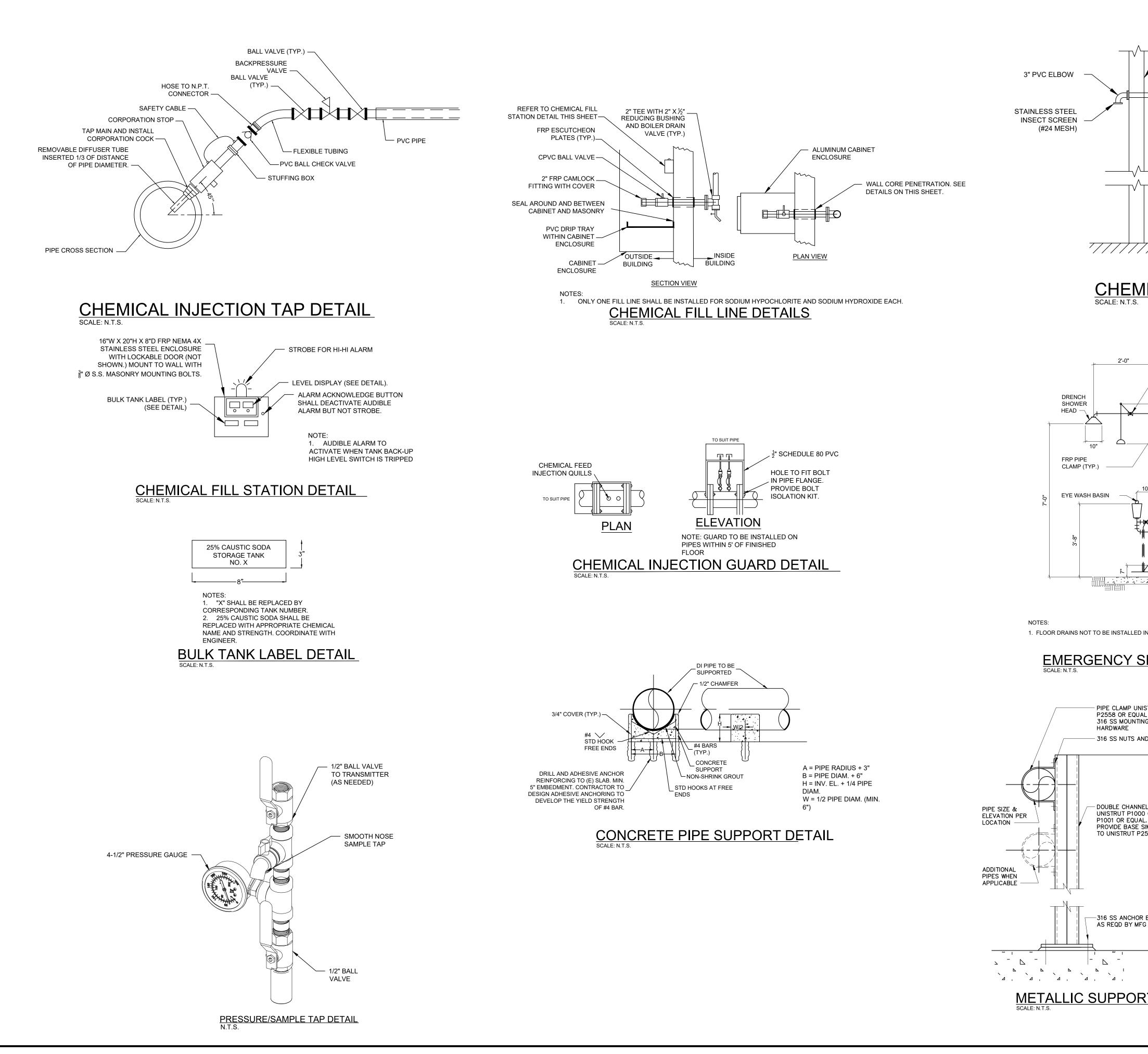

SHEET

PROJECT NO. 20	233667.002A
ISSUE DATE	OCT. 2023
CURRENT REVIS	ION -
DESIGNED BY	AB/GAA
DRAWN BY	MPS
CHECKED BY	ТВ
APPROVED BY	ТВ

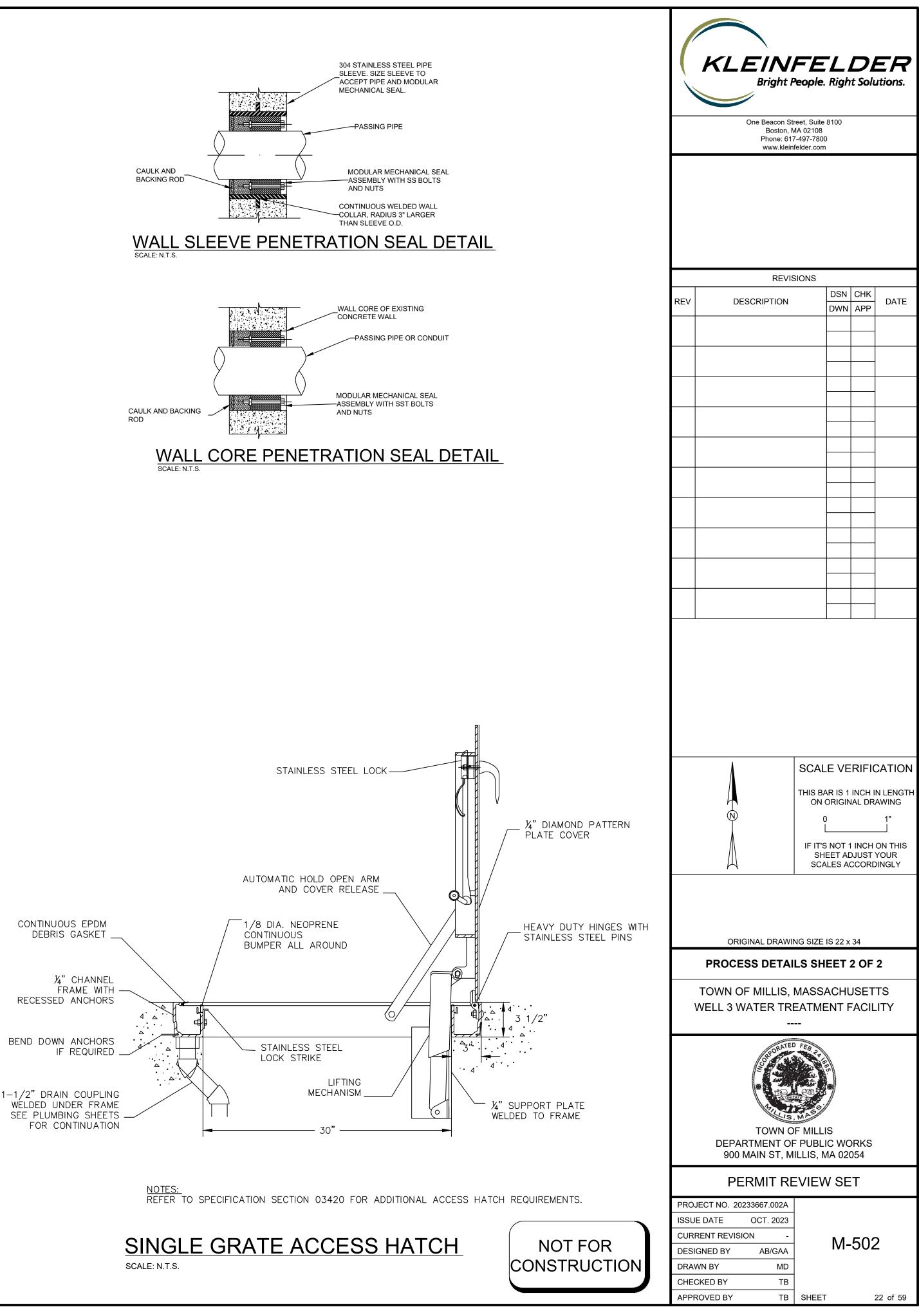

M-008

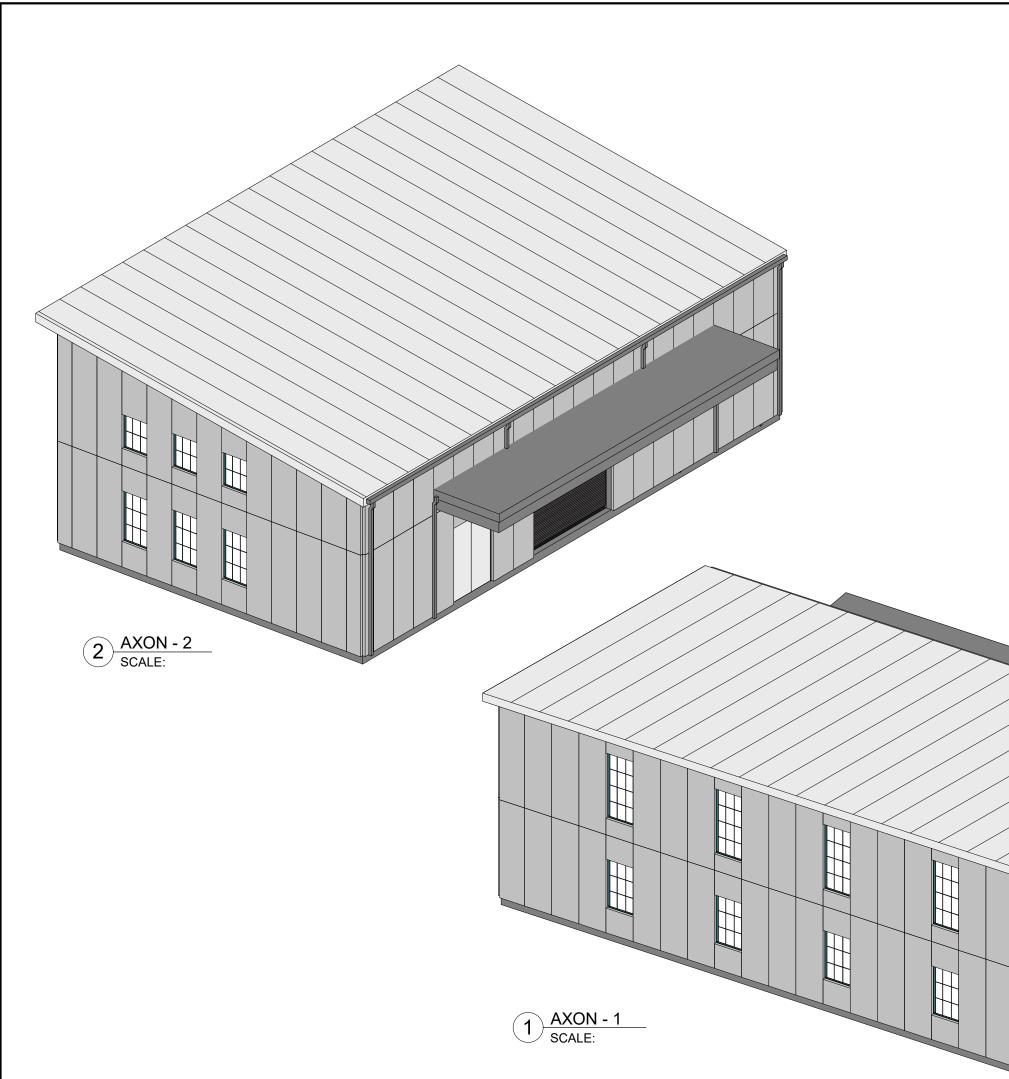






	-			
			FELDER People. Right Solutions.	
	One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800			
		www.kleinf		
		REVIS		
	REV	DESCRIPTION	DSN CHK DWN APP	
			SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY	
		ORIGINAL DRAWIN	NG SIZE IS 22 x 34	
	SC	DDIUM FLUORIDE C CHLORINE ANALY	HEMICAL FEED AND ZER SCHEMATICS	
DRAIN TO CUP SINK I MIN 1" AIR GAP IGHT TANK	,	TOWN OF MILLIS, I WELL 3 WATER TRE 		
R POLYETHYLENE TH POLYPROPYLENE ER TYPE BASKET ND SODIUM E TABLETS		TOWN OF 900 MAIN ST, MI	PUBLIC WORKS	
		PERMIT RE	VIEW SET	
NOT FOR CONSTRUCTION	ISSU CURI DESI DRAV	JECT NO. 20233667.002A E DATE OCT. 2023 RENT REVISION - GNED BY AB/GAA WN BY MPS CKED BY TB	M-009	
		ROVED BY TB	SHEET 18 of 59	





WALL	KLEINFELDER Bright People. Right Solutions.
3" PVC	
	Click Here to Select Office Address
TANK	
	REVISIONS
	REV DESCRIPTION DSN CHK DWN APP
ICAL TANK VENT	
SELF CLOSING VALVE ALTERNATE SUPPLY LOCATION	
ALARM BECON AND HORN KIT	
10" FOOT OPERATED VALVE	
PLUGGED SUPPORT SEE DETAIL	
WASTE 1 1/4" IPS	
PLUGGED	SCALE VERIFICATION
SHOWER AND EYE WASH	THIS BAR IS 1 INCH IN LENGT ON ORIGINAL DRAWING 0 1"
SHOWER AND LIE WASH	IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY
NISTRUT AL WITH ING	
	ORIGINAL DRAWING SIZE IS 22 x 34
	PROCESS DETAILS SHEET 1 OF 2 TOWN OF MILLIS, MASSACHUSETTS
NELS NO OR AL. SIMILAR	WELL 3 WATER TREATMENT FACILITY
MULEO DO OR HEIGHT NOT TO EXCERT SIMILAR HEIGHT NOT TO EXCERT 22546 T NOT TO EXCERT NULEACTURERS LOAD CAPACITY 22546 T NOT TO EXCERT NULEACTURERS LOAD CAPACITY NULEACTURERS LOAD CAPAC	CORD FEB 27
22546 OT TO MAX. HEIGHT NOT TO MANUFACTURERS LOAD	
R BOLTS FG	TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054
_	PERMIT REVIEW SET
RT NOT FOR CONSTRUCTION	PROJECT NO. 20233667.002A ISSUE DATE OCT. 2023 CURRENT REVISION - DESIGNED BY AB/GAA DRAWN BY MPS
	CHECKED BYTBAPPROVED BYTBSHEET21 of 59

GE	NERAL NOTES	SYMBOLS LEGEND	MATERI
1. 2. 3. 4. 5. 6.	ALL WORK TO BE NEW U.O.N. ALL WORK SHALL COMPLY WITH FEDERAL, STATE, AND LOCAL BUILDING REGULATIONS. ANY CONFLICTS BETWEEN SITE CONDITIONS AND DRAWINGS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE OWNER AND ARCHITECT/DESIGNER. ALL DOORS TO BE A MINIMUM OF 4" FROM NEAREST PERPENDICULAR PARTITION, U.O.N. TEMPERED GLASS TO BE USED IN ALL LOCATIONS AS REQUIRED BY MASSACHUSETTS STATE BUILDING CODE - CMR 780. REVIEW LAYOUTS FOR PARTITIONS IN FIELD WITH THE OWNER AND ARCHITECT/DESIGNER PRIOR TO START OF CONSTRUCTION.	0 COLUMN GRID LINE	
7. 8.	PROVIDE FIRE EXTINGUISHERS IN QUANTITIES AND LOCATIONS ON DWGS (MIN 1/6000 SQ-FT & 75' MAX TRAVEL DISTANCE). REVIEW FINAL LOCATIONS WITH THE ARCHITECT/DESIGNER PRIOR TO START OF CONSTRUCTION. COORDINATE BLOCKING REQUIREMENTS AND LOCATIONS WITH ELEVATIONS AND	€ CENTER LINE	
9. 10.	DETAILS. ALL WOOD BLOCKING TO BE FIRE RETARDANT TREATED. ALIGN CENTERLINES OF ALL WALL-MOUNTED FIRE EXTINGUISHERS AND MEP/FP DEVICES ON WALLS IN THE SAME LOCATION. DISCLAIMER: MANUFACTURERS REFERENCES ARE INTENDED TO ESTABLISH COLOR AND FINISH ONLY AND ARE NOT INTENDED TO LIMIT SELECTIONS FROM OTHER	1 DETAIL MARKER	
11.	MANUFACTURERS. WHEN ALTERNATE SELECTIONS ARE SUBMITTED, SUBMITTAL SHALL INCLUDE MATERIALS LISTED FOR COMPARISON. DIMENSIONS: A. ALL DIMENSIONS ARE TO FINISHED FACE OF WALL U.O.N. B. DRAWINGS ARE NOT TO BE SCALED; VERIFY ANY MISSING OR CONFLICTING	101 DOOR TAG	
	 WRITTEN DIMENSIONS WITH THE ARCHITECT/ DESIGNER PRIOR TO CONSTRUCTION. NOTIFY ARCHITECT OF CONDITIONS WHERE CLEAR OR CRITICAL DIMENSIONS ARE DESIGNATED BUT CANNOT BE MET OR WHERE CORRIDOR/AISLE WIDTH 	A101 SECTION MARKER	
	CANNOT MEET THE MINIMUM REQUIREMENTS (3'-8" U.O.N.) D. MAINTAIN FINISH FLOOR BASE ELEVATION THROUGHOUT THE CONTRACT AREA SUCH THAT ALL DIMENSIONS INDICATED AS ABOVE FINISH FLOOR ARE AT THE SAME ELEVATION.	Room name 101 ROOM IDENTIFICATION	
		1t WALL TAG	

PROJECT PREVIEW & DESCRIPTION

TERIALS LEGEND

	ALUMINUM	
	BATT INSULATION	
	BRICK	
	CERAMIC TILE	
	СМU	
	COMPRESSIBLE FILLER	
4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4	CONCRETE	
	EARTH	
	GRATE	
180808 08080 80808	GRAVEL	

GWB

PARTICLE BOARD

RIGID INSULATION

SAND, CEMENT, GROUT

PLYWOOD

SHINGLE

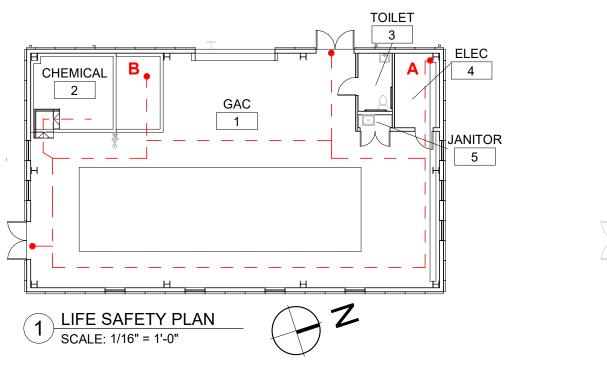
STEEL

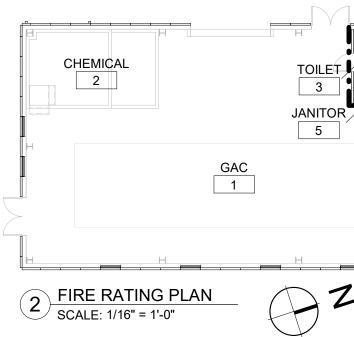
WOOD

SMOKE SEALANT

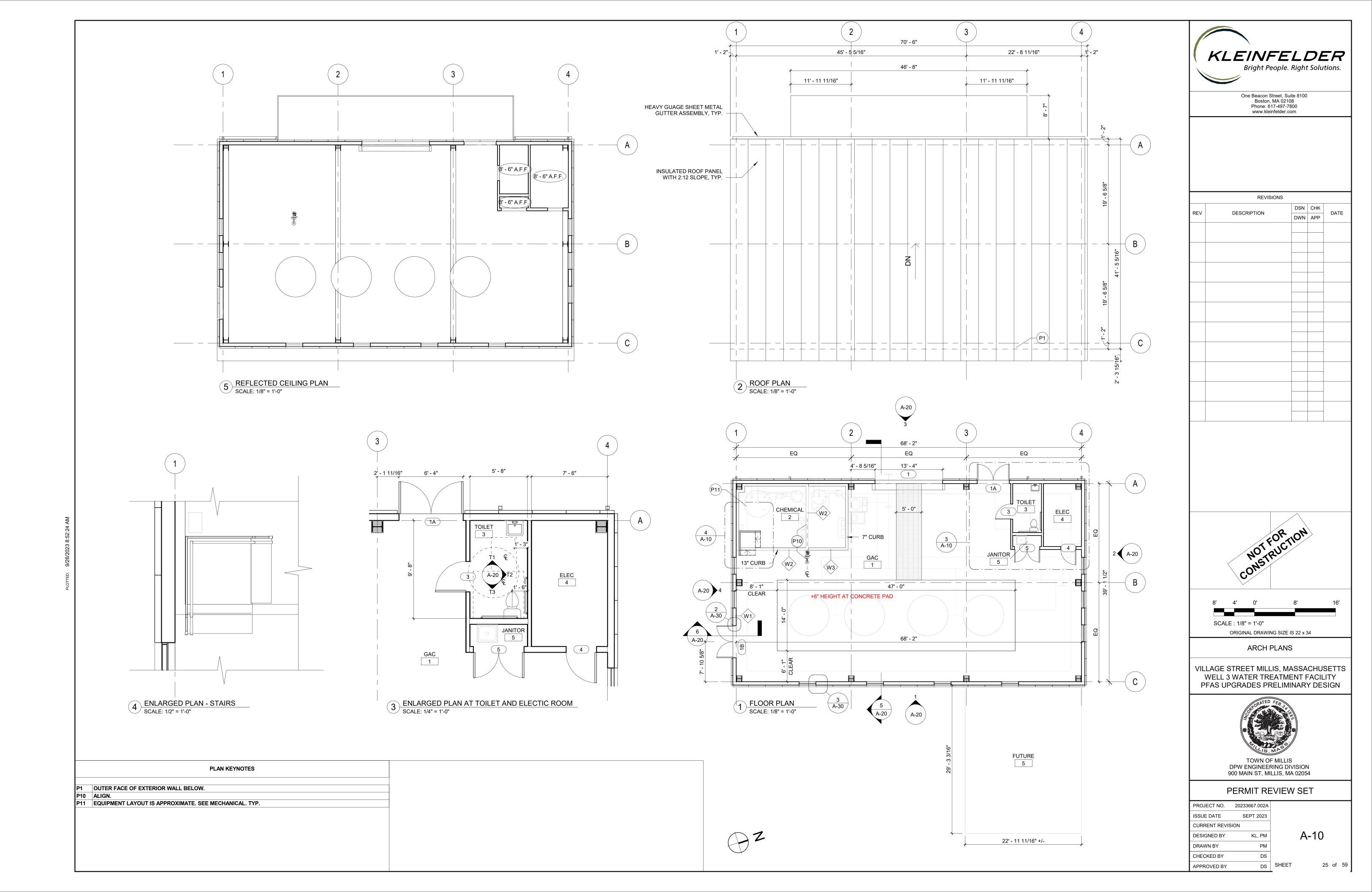
SPRAYED FIREPROOFING

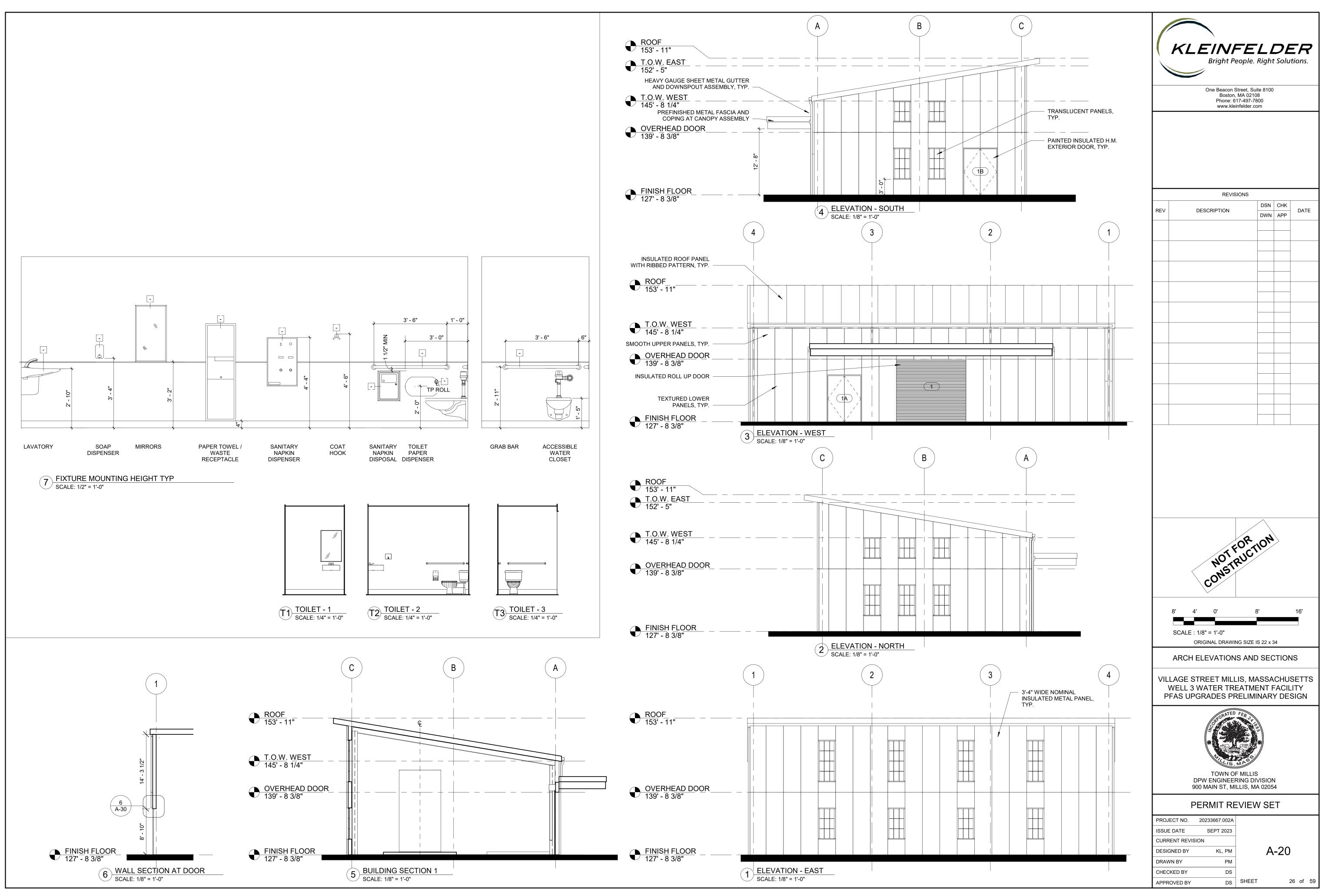
ABBREVIATIONS					
& @ A/E AB AC ACT ACP	And At Architect / Engineer Anchor Bolt Air Conditioning Acoustic Ceiling Tile Acoustic Ceiling Panel	GND GR GRL GRTG GSKT GT GVL			
AD ADH ADJC AFF AH AL ALT ANOD APP ARCH ASPH	Access Door Adhesive Adjustable Adjacent Above Finished Floor Air Handler Aluminum Alternate Anodized Approximately Architectural Asphalt	GWB HC HDW HGT HM HMD HNDRL HO HORIZ HP			
BD BETW BIT BLDG BLKG BM BO BOT BP BR BRZ BU	Board Between Bituminous Building Blocking Beam By Others Bottom Building Paper Brass Bronze Built Up	HR HVAC ID IF IN INSUL INT JAN JNT KD			
C CAB CEM CG CPT CHAN CHBD CHFR CHR CI CJ CLG CLR CLG CLR CLR CMPST CMU CNTR COL COMP	Course Center Line Cabinet Cement Corner Guard Carpet Channel Chalkboard Chamfer Chrome Cast Iron Control Joint Closet Ceiling Clearance Composite Concrete Masonry Unit Counter Column Compressible	KIT L LG LAD LAM LAV LB LBL LCC LH LHR LNTL LONG LP LT LTWT LTG			
CONC CONN CONSTR CONTR COP CORR CT CW	Concrete Connection Construction Continuous Contractor Copper Corridor Ceramic Tile Curtain Wall Diameter	LVR MAINT MANF MAS MATL MAX MDO MECH MED MED			
DBL DEMO DIA DIV DIM DMPF DN DOP DR DS DSP DTL DWG	Double Demolition Diameter Division Dimension Dampproofing Down Door Opening Door Downspout Dry Standpipe Detail Drawing	MF MF MH MIN MIR MISC MLDG MO MS MTD MTL MTL MTR MULL MVBL			
E EA EF EJ EL ELEC ENGR ENTR EP	East Each Expansion Bolt Exhaust Fan Expansion Joint Elevation Electrical Engineer Entrance Electrical Panel	N NA NAT NIC NO NOM NTS OA			
EQ EQUIP ESB ESMT ETR EWC EX / EXST EXC EXH EXP	Equal Equipment Exterior Soffit Board Easement Existing to Remain Electric Water Cooler Existing Excavate Exhaust Expansion	OC OD OF OFF OH OPNG OPHD OPP P&S			
EXT FCO FD FDN FE FEC FF FGL FHC FHY FIN FL FLUOR FOC	Exterior Floor Clean Out Floor Drain Foundation Fire Extinguisher Fire Extinguisher Cabinet Fabric Flashing Fiberglass Fire Hose Cabinet Fire Hydrant Finished Floor Fluorescent Face of Concrete	PAR PART PC PERF PL PLAM PM PNL PNL PRMT PT PTD PVG PWD			
FOF FOM FR FPRF FS FT FTG FTR FURN FURR FV FWC	Face of Finish Face of Masonry Fire Resistant Fireproofing Fiber Reinforced Plastic Full Size Foot or Feet Footing Fin Tube Radiation Furniture Furring Field Verify Fabric Wall Covering	QT QTY R RAD RCP RD REC REF REFR REINF REM REQD REQMTS			
G GA GALV GB GC GEN GL GLMU	Gas Gauge Galvanized Grab Bar General Contractor Generator Glass Glass Masonry Unit	RESIL RFI RFG RH RM RO RV			

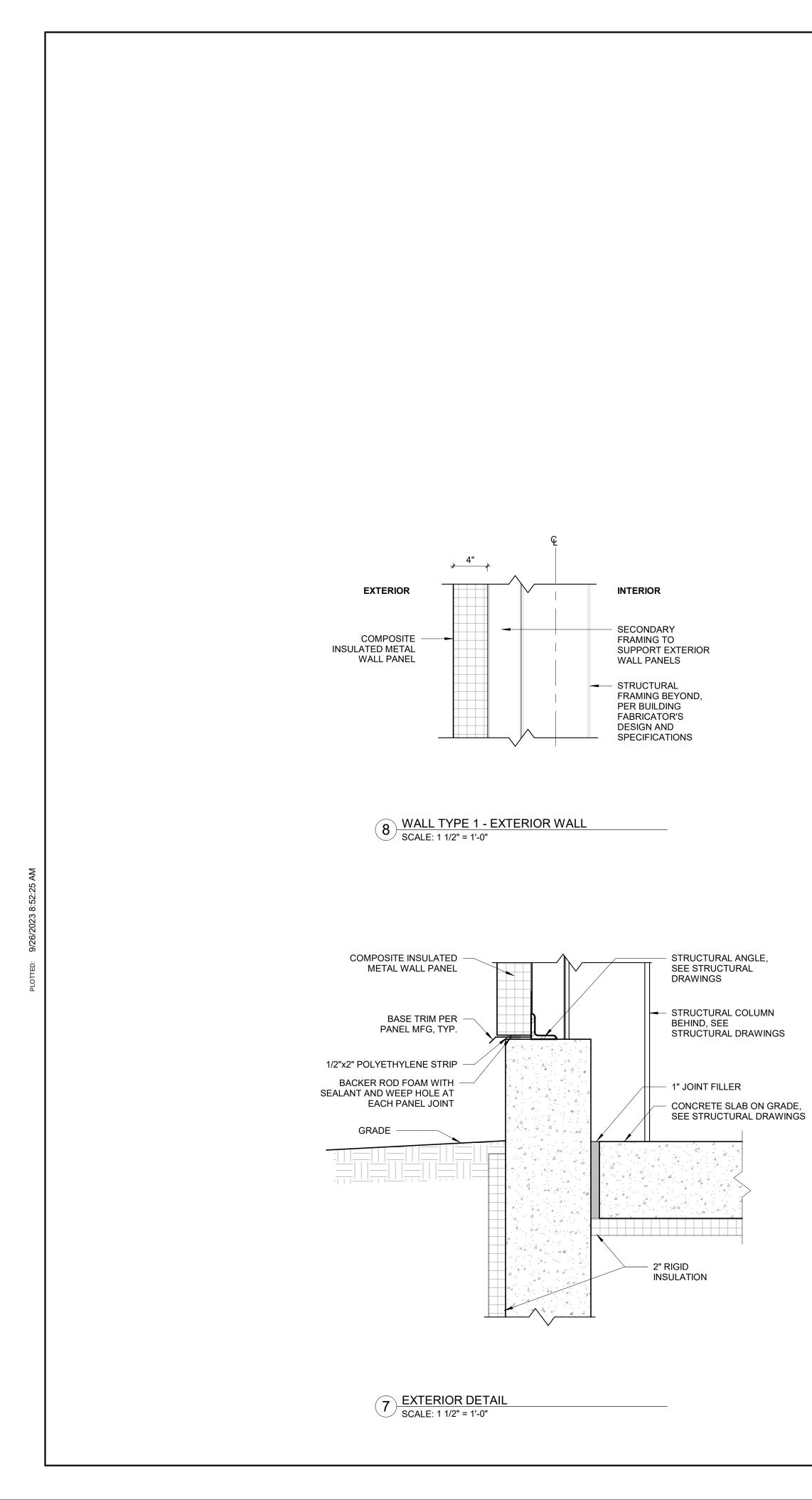

Ground Grade Grille Grating Gasket Grout Gravel Gypsum Wall Board Hose Bibb Handicapped Hardware Height Hollow Metal Hollow Metal Door Handrail Hold Open Horizontal High Point Hour Heat, Ventilation & Air Conditioning Inside Diameter Inside Face Inch or Inches Insulation Interior Janitor Joint Knocked Down Kitchen Left Linear Foot Length Ladder Laminate Lavatory Pound Label Lead Coated Copper Left Hand Left Hand Reverse Linear Locker Lintel Longitudinal Low Point Light Lightweight Lighting Louver Maintenance Manufacturer Masonry Material Maximum Medium Density Overlay Mechanical Medium Membrane Metal Flashing Manufacturer Manhole Minimum Mirror Miscellaneous Molding Masonry Opening Metal Stud Mounted Metal Mortar Mullion Movable North Not Applicable Natural Not In Contract Number Nominal Not To Scale Overall On Center Outside Diameter Outside Face Office Overhead Opening Opposite Hand Opposite Power & Signal Parallel Partition Precast Perforated Perpendicular Plate Plastic Laminate Pressed Metal Panel Perimeter Pressure Treated Painted Paving Plywood Quarry Tile Quantity Radius or (Stair) Risers Radiator Reflected Ceiling Plan Roof Drain Recessed Reference Refrigerator Reinforcing Removable Required TS Requirements Resilient Rigid Foam Insulation Roofing Right Hand Room Rough Opening Roof Vent

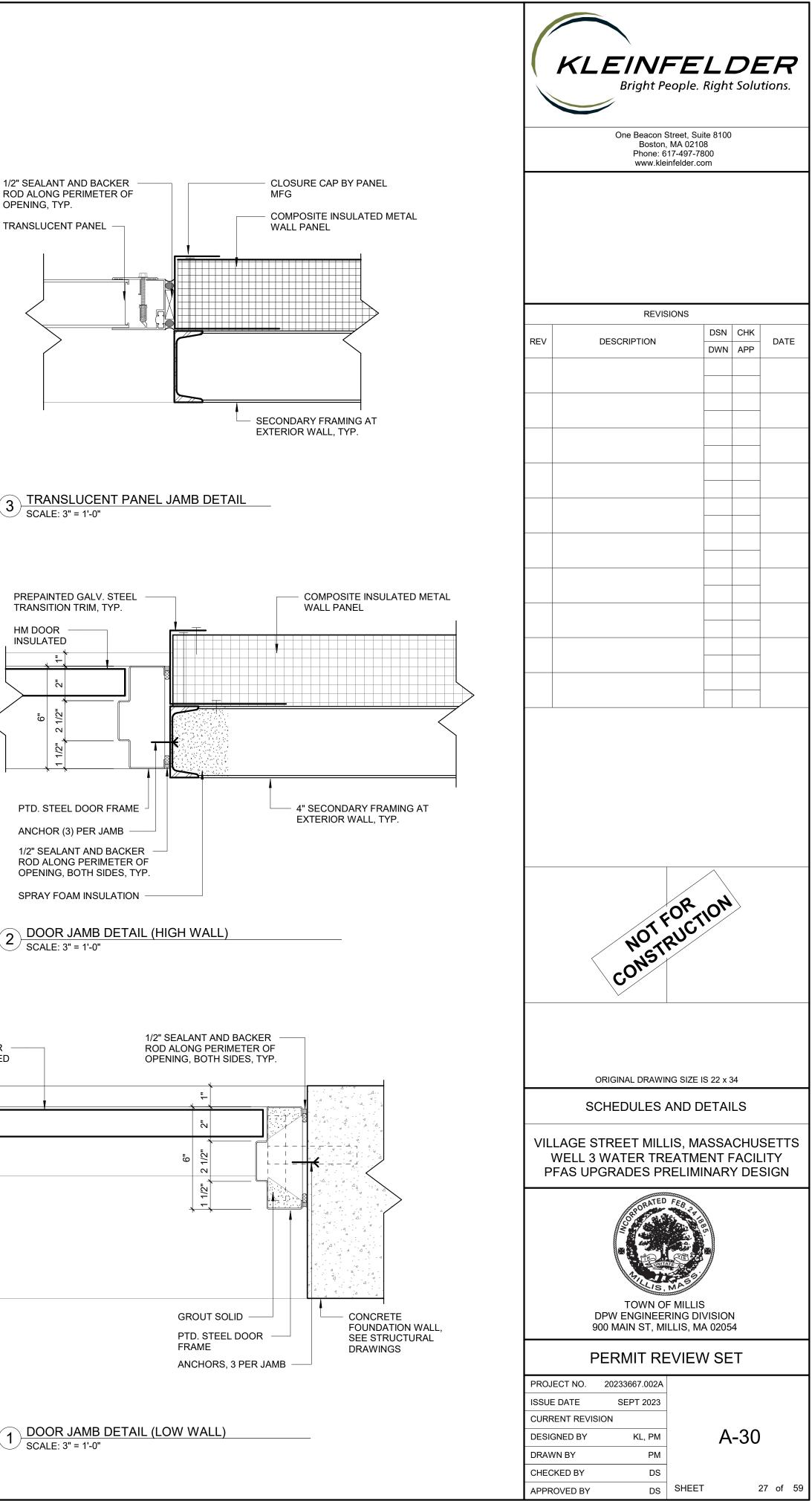

Concernence Consider Concernence Concernen	SAER	South	
Converting Several Converting Several Converting Several Converting Several Status	SAFB SC	Sound Attenuation Fiber Blanket Sealed Concrete	
COM Seven manual s	SCHED		
Conversion Sector Secto	SCR	Screw	Bright People. Right Solution
Bit Sector All of Ford Sector State Sector	SCRN		
Signal Pool Oral Pool Strikting Strikting Strikting Strikting <td>SD SECT</td> <td>Section</td> <td></td>	SD SECT	Section	
Schen Stelle Steller	SF	Square Foot	
Straining Straining	SGL	Single	
Bit Provide Bit Provide And	SHT		Phone: 617-497-7800
BMA Strate Strate S	SHTHG SHV		www.kleinfelder.com
Miles Birk See Sections and address and address and address and address addres	SIM	Similar	
PP Strace Period Print Brain Strace Stand SX 157 101 Strace Stand Strace Stand <t< td=""><td>SK</td><td>Sink</td><td> </td></t<>	SK	Sink	
PFC Specifications Start N1 Specifications TO Specifications Start N1 Specifications	SM		
Big and the standard stand	SP SPEC		
SIG AT TIT Summer and a control of the second of the se	SQ	Square	
The Steel of	SS / ST STL	Stainless Steel	
Storage The Part Biologic With Spring With Spring With Spring With Spring With Spring With Spring With Spring With Spring Res Tracks (Slaw) Tracks	STD		
The second Proving Studiand NMM Synthe Studiand NMM Studiand Studiand NMM Underwise Laboratory Studiand NMM Weither Studiand Studiand NMM Weither Studiand Studiand NMM </td <td></td> <td></td> <td></td>			
BUPP Supported Wink Spectral Supported Synthese Fuer Stocks Free Tempose and Crowe Boy Te Polymental BD Te Polyment	STR		
SYMM Symtal Total (Spin) Total (Spin) <td>SUSP</td> <td>Suspended</td> <td></td>	SUSP	Suspended	
SYNMS Symmetrical Suffice Four Biols PC DESCRIPTION IDR	SVF		REVISIONS
SYS System System Product (Statist) Trocks (Statist) Trocks (Statist) Trocks (Statist) Trocks (Statist) Trocks (Statist) Statist)	SYM SYMM		
345 Suffice Fund Sides Image and Storey Trade of Storey Trade fund Storey Trade fund Storey Trade Storey Storey Trade Storey	SYS	System	REV DESCRIPTION
Toppie and Store Toppie and Store The Toppie and Store	S4S		DWN APP
Toppie and Store Toppie and Store The Toppie and Store	т	Treads (Steirs)	
PB Toble Bolt PB Toble Bolt PB Toble Bolt PB Toble Bolt PE Toble Bolt PE Toble Bolt PB Toble Bolt PD PB PD <t< td=""><td>T T&G</td><td></td><td></td></t<>	T T&G		
IBD To Be Determined Deprint Transact Decartance Overlay (Melamine) Element Transact Her Rein Transact Her Reinstrature The Sector Secto	ТВ	Tobble Bolt	
EMP Temped J Temporary TEN Temped J Temporary THE Teck TH Teck TH	TBD		
EEL Notes Transition HERK Transition Transition HIRE Transition Transition TRO To Prove Transition Transition Transit Transition<	TDO TEMP		
EERR Terizzo Hindo U H	TEMP		
HK Thek HREES Troough HREES Troough HREES Troough HREES Troough HREES Troough HREES Troough HS Unimitian WA Unimitian WA Unimitian WA Unimitian WA Unimitian WA Unimitian WA Work Reveal WA <t< td=""><td>TERR</td><td>Terrazzo</td><td></td></t<>	TERR	Terrazzo	
HHKU Though and Groove GG Top Of Masony GG Top Of Masony GS Top Of Steel WID Ware WE Weel steel WC Weel steel WG Weight	ТНК	Thick	
Table To Diverse COD To D Concrete COD Unreal COD Work Win Work West Win Work </td <td></td> <td></td> <td></td>			
CD Top Of Concerner CMC Top Of Concerner CMC Top Of Malay Translucent Typical JL Underwiner Laboratory JNN / UO Unless Otherwise Model JFR Weinford Dial VIC Wind Class Wind Weinford Dial Wind Wind Class Wind Wind Class Wind Wind Mind Class Wind Wind Class Wind Wind Class Wind Wind Class Wind<	THRU T&G		
COL Top Of Concerte COM Top Of Mascony Top Of Mascony Top Of Mascony VIP Typical VIP Typical VIP Typical VIP Typical VIP Underwitten Laboratory VIP Vip Of Composition Tio VIP Vender VIP <td>Т.О.</td> <td>Top Of</td> <td></td>	Т.О.	Top Of	
Top Of Selection Top Of Selection RRNW Translucent TRNN Underwinds taboratory JL Underwinds taboratory JND J UDU Underwinds taboratory JND Web Ward Cosol JND Web Web WID Web Web WID Web Web WWF WEB We	ТОС	Top Of Concrete	
TOW Top Of Wall TRANS Translutent TRANS Translutent TRANS Translutent TRANS Translutent TRANS Translutent TRANS Translutent Tr	TOM		
Translucent Type individual AL Underwiten Laboratory Underwiten Laboratory Wind Undersoften Laboratory Underwiten Laboratory Wind Windsoft AB Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Wind Wentersoft AB Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Wind Wentersoft Wind Wentersoft Underwiten Laboratory Underwiten Laboratory Underwiten Laboratory Wind Wenter Wenter Ventry Field Wind Wenter Weided Wind Wenter Weided Wind Wentersoft Underwiten Laboratory Underwiten Laboratory Wind Wenter Weided Wind Wenter Weided Wind Wenter Weided Wine Fabric Wind Weided Wind Wind Wind Wind Wind Wind Wind Wind			
YP Typical JII Underwriten is loonstory JIN WO Vapor Banter or Vingl Base JIN WO Variage Convolution Tile JIN WO Will Word JIN WO Will Word JIN WO Will Will WO Will Will WO Will Will WWF Weided Wire Fabric	TRANS		
AL Underwriters Laboratory MPR NUON Underwriters Laboratory MPR NUON Underwriters Laboratory MY Underwriters Laborator MY Verfy MY Verfy MY Verfy MY Verfy MY Verfy MY Verfy MY Weided Wire Fabric WY Weided Wire Fabric WY Weided Wire Fabric VILLAGE STREET MILLIS, MASSACHUSE' WEL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG VILLAGE STREET MILLIS, MASSACHUSE' WEL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DWU AND AN AN ST, MILLIS, MA 02054	TYP		
JNIFIN Udfinished JRA UNA United U			
AND (JON) Unless Offerwise Noted Undel Un		Underwriters Laboratory	
JR Unital W Udiventition JR Vapor Barling or Vinyl Base JR Variet Variet	UNFIN UNO / UON		
M Unit Verificial /// B Vapor Barrier or Vinyl Base /// T Verificial /// E Verificial // E Verificial	UR	Urinal	
T/VCT Virjl Composition Tile VER Verify Verify Verify // R Verify	UV		
T/VCT Virjl Composition Tile VER Verify Verify Verify // R Verify		Vapor Darrier or Visul Data	
HER Verley HER Verly Work Verly Work Verly WO Windh WO Windh WIT Weided Wire P SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 × 34 GENERAL NOTES, LEGENDS & ABBRE VIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILIS MASSACHUSET POWENGINEERING DIVISION DOW HIN AR 20054 DY UPGRADES PRELIMINARY DESIGN D	VB VT / VCT		
#FR Verify #ET Verified #ET Verified #ET Verified #ET Verified MC Variable WC Water Coset WO Without WT Weight WF Weight	VT/VCT VEN		
PERT Verify In Field MR Verify In Field MR Vapor Relativer R Vapor Relativer R Vapor Relativer WC Winet Closet WW SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIGN DPW ENGINEERING DIVISION DPW ENGINEERING DIVISION DPW ENGINEERING DIVISION DPW ENGINEERING DIVISION DPW ENGINEERING DIVISION	VER	Verify	
//F Verify in Field //R Venor //N West //N We	VERT	Vertical	
NR Vender WC Vinyl Wall Covering W Vest Wo West Wo West Wo West Wo Without With Without With Without WT Weight WT Weight WT Weight WT Weight WT Weight WHE States and the static With States and the static Weight WHE Weight WHE States and the static Weight WHE States and the static With States and the static SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 × 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE' WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DEW ENGINEERING DIVISION 000 MAIN ST, MILLIS, MA 20254 PERMIT REVIEW SET POJECT NO. 2023087.0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM CHECKED BY DS	VEST VIF		
/R Vapor Relateder WC Viny Wall Covering N West WC Water Closet WO Wood WIL Wind Gless WP Wooding Point WTH Weided WIP Weided Wire Weided WIP Weided WWF Weided Wire Fabric Scale As noted ORGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE' Weiled WEIL WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG VILLAGE STREET MILLIS, MASSACHUSE' Weiled WEIL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DESIGNAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE' WELL PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DESIGNED DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET POJECT NO. 2023087.0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED DIV DESIGNED DIV	VIF VNR		
WG Vinyl Wall Covering N West WG Water Closet WD Wind Glass WH Wind Glass WF Weight Point WT Weight Point WT Weight Point WT Weight Point WT Weight Point WTRERF Weided Wire Fabric SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENEFAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG VILLAGE STREET MILLIS, MASSACHUSE WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DESIGNED DIVISION 900 MAIN ST, MILLIS, MA 20205 PERMIT REVIEW SET PROJECT NO. 2023967.0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL	VR	Vapor Retarder	
MC Weter Closet Wo Without WU Without SCALE AS NOTED ORIGINAL DRAWING SIZE 15 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG WULLS ON DOWN OF MILLIS DVW ENGINEERING DIVISION 900 MAIN ST. MILLIS, MA 22054 PERMIT REVIEW SET PROJECT NO. 2023/3667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS	VWC		
MC Weter Closet Wo Without WU Without SCALE AS NOTED ORIGINAL DRAWING SIZE 15 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG WULLS ON DOWN OF MILLIS DVW ENGINEERING DIVISION 900 MAIN ST. MILLIS, MA 22054 PERMIT REVIEW SET PROJECT NO. 2023/3667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS	14/		
ND Wood Without Without Without Working Point WT Weided WP Working Point WT Weight Wither Weided Wire Fabric Weided Wire Fabric SCALE AS NOTED SCALE AS NOTED SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE' WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 62264 PERMIT REVIEW SET PROJECT NO. 20230867.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL. PM DESIGNED BY KL. PM CHECKED BY DS	W		
Without WO Without Scale as NoteD ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACLITY PFAS UPGRADES PRELIMINARY DESIG DEVICENCE DEVICE NON DEVICE NON DEVICE WILLS DEVICE NO MILLIS DEVICE NO MILLIS DEVICE NO MILLIS MA-1 DRAWN BY MR			
WO Wirde Class WD Working Point WP Working Point WT Width WTRRFF Waterprofing WWF Welded Wire Fabric SCALE AS NOTED SCALE AS NOTED SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 × 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DEWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 20254 PERMIT REVIEW SET PROJECT NO. 20230867.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM CHECKED BY DS A-11	W/		
MUD Welded WP Working Point WT Weight WTH Weight WTRPRF Waterproofing WWF Welded Wire Pabric SCALE AS NOTED SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DEVINE STREET MILLIS, MASSACHUSE WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DEVINE STREET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DEVINE STREET MILLIS, MA 20054 PERMIT REVIEW SET PROJECT NO. 2023867.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM CHECKED BY DS A-1	W/O	Without	
MP Working Point WTRPRF Wildh WWF Waterproofing WWF Waterproofing WWF Waterproofing WWF Waterproofing WUTRPRF Weided Wire Fabric SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG UPGRADES PRELIMINARY DESIG DPW ENCINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 2023367.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL. PM CHECKED BY DS	WGL		
NT Width WTRRFF Width Width Width Welded Wire Fabric SCALE AS NOTED SCALE AS NOTED SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG DPW ENGINEERING DIVISION 900 MAIN ST. MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 2023867.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM CHECKED BY DS			
WTRPRF WWFFF Welded Wire Fabric Welded Wire Fabric SCALE AS NOTED SCALE AS NOTED SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSE WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG OF MILLIS MA 20254 PERMIT REVIEW SET PROJECT NO. 2023/067/0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL.PM DRAWN BY PM CHECKED BY DS	WP WT		
WTERPRF Welded Wire Fabric Welded Wire Fabric UNDET FOR TRUCTION SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG UVELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DUVSION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO 2023/067/0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM CHECKED BY DS	WTH	Width	
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS	WTRPRF	Waterproofing	
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS	WWF	Welded Wire Fabric	
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			0K-10K
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			10.01
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			r ctr
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
SCALE AS NOTED ORIGINAL DRAWING SIZE IS 22 X 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DYNE ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233067.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			l
ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
ORIGINAL DRAWING SIZE IS 22 x 34 GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			SCALE AS NOTED
GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
GENERAL NOTES, LEGENDS & ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.0024 ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DFW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			ORIGINAL DRAWING SIZE IS 22 x 34
ABBREVIATIONS VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DFW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			GENERAL NOTES LECENDS &
VILLAGE STREET MILLIS, MASSACHUSET WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG TOWN OF MILLIS DEVERSIONEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG			
WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIG			
PFAS UPGRADES PRELIMINARY DESIG			· · ·
PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			PFAS UPGRADES PRELIMINARY DESI
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			BATED FER
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			ER CONTRACTOR
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			I S A S A S A S A S A S A S A S A S A S
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			Summary Summary
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			197
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			LIS, MA
DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DESIGNED BY KL, PM CHECKED BY DS			TOWN OF MILLIS
PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			DPW ENGINEERING DIVISION
PROJECT NO. 20233667.002A ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			
ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			PERMIT REVIEW SET
ISSUE DATE SEPT 2023 CURRENT REVISION DESIGNED BY KL, PM DRAWN BY PM CHECKED BY DS			PROJECT NO 20233667.0024
CURRENT REVISIONDESIGNED BYKL, PMDRAWN BYPMCHECKED BYDS			
DESIGNED BY KL, PM A-1 DRAWN BY PM CHECKED BY DS			ISSUE DATE SEPT 2023
DESIGNED BY KL, PM A-1 DRAWN BY PM CHECKED BY DS			CURRENT REVISION
DRAWN BYPMCHECKED BYDS			
CHECKED BY DS			
CHECKED BY DS			DRAWN BY PM
APPROVED BY DS SHEET 23 of			

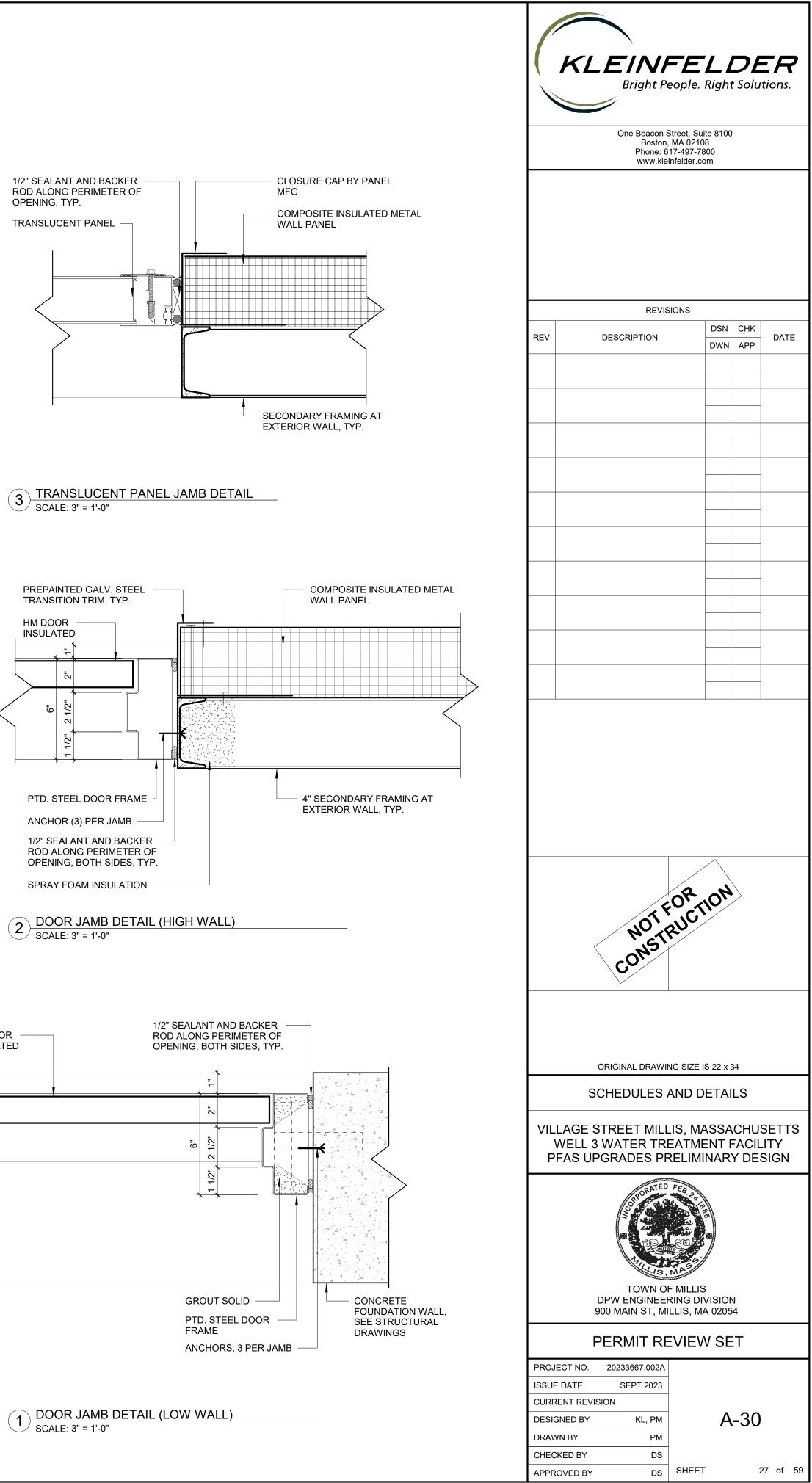
DS SHEET

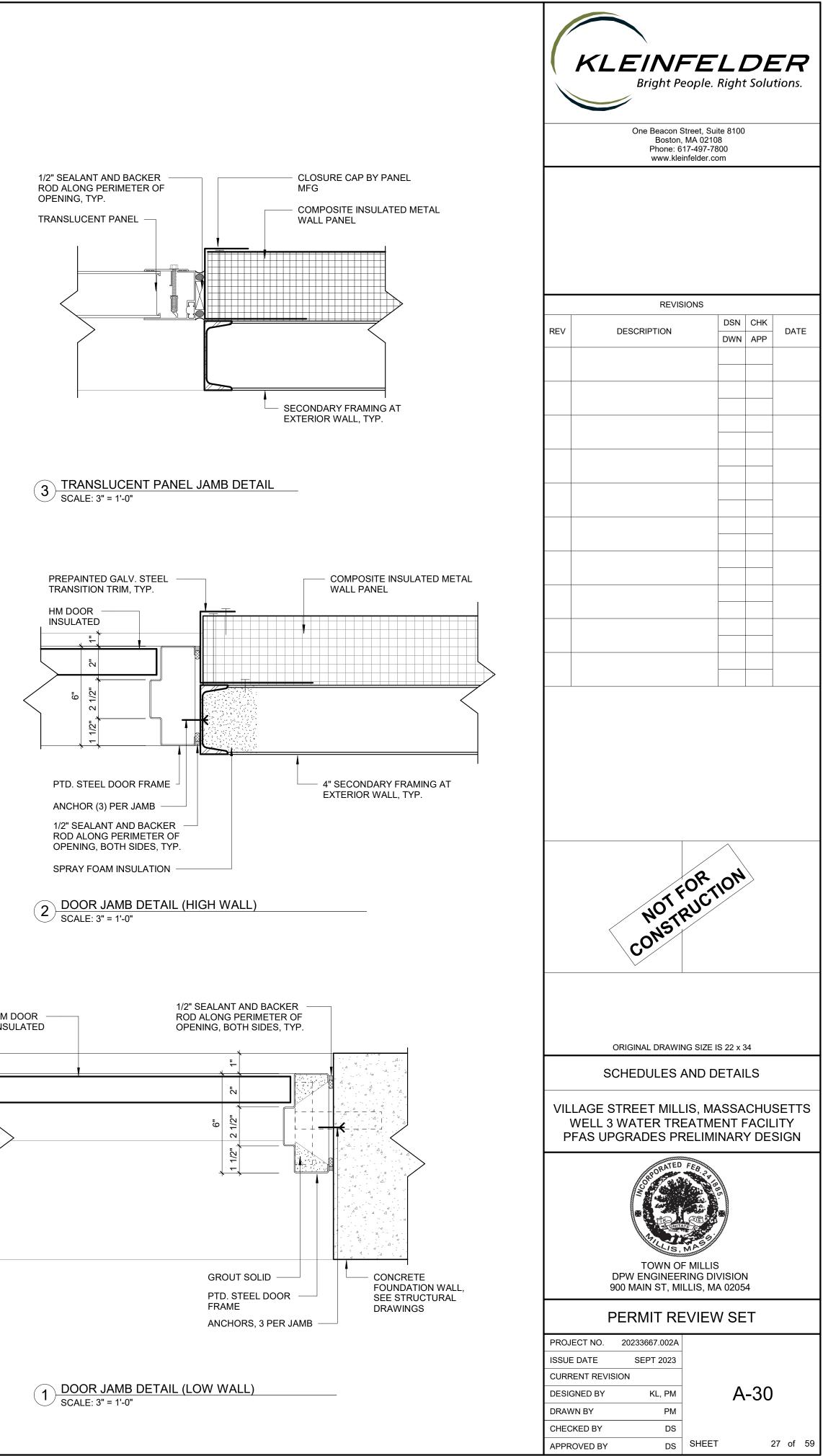

APPROVED BY

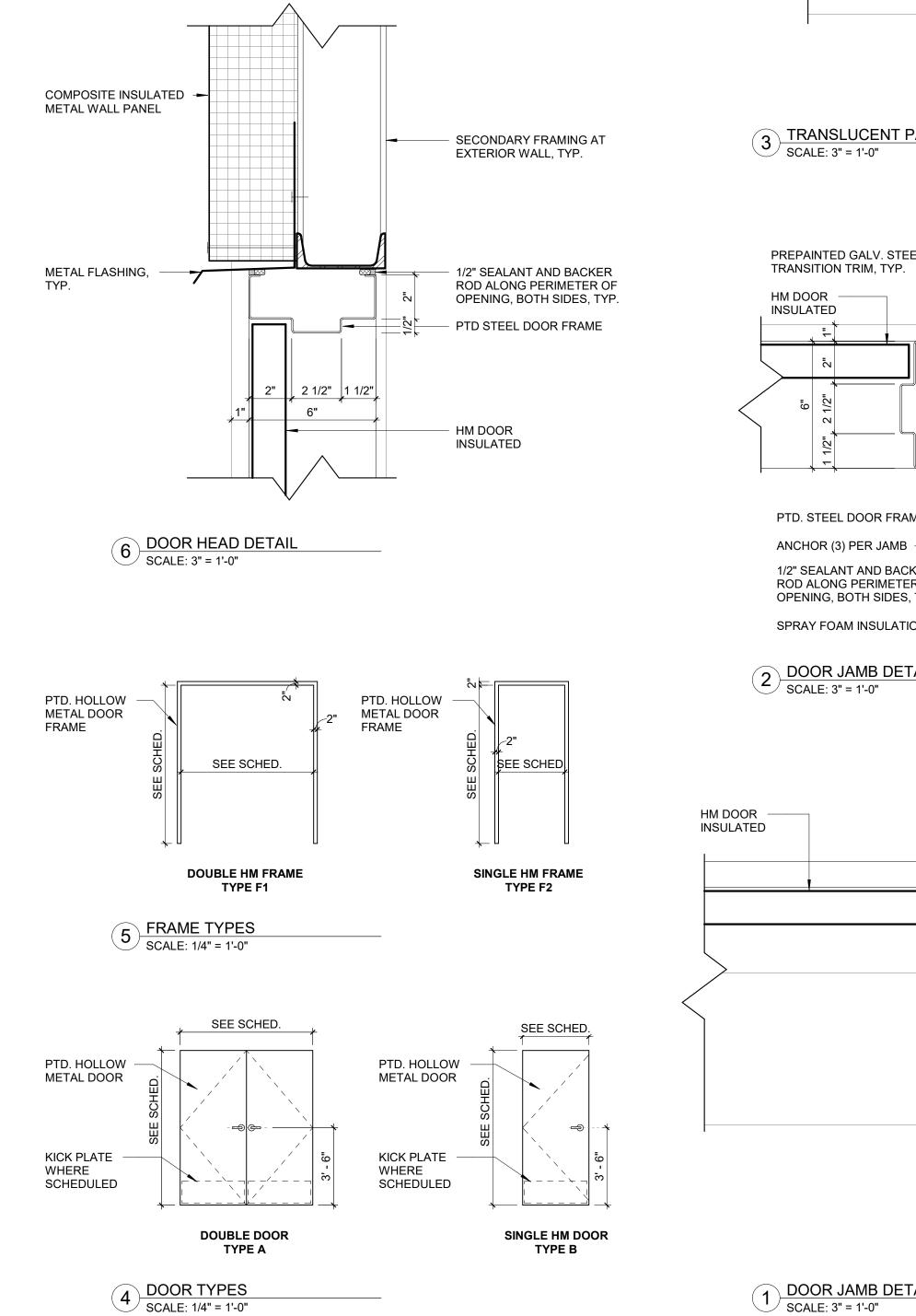

	DE SUMMARY				IAL ENERG	CONSERVATION CODE (20	20 MEC)		
GAC BUILDING(NEW CONSTRUCTION)OVERALL GROSS BUILDING AREAOVERALL BUILDING VOLUME2,944 GSF85,230 CF				CHAPTER 4 COMMERCIAL ENERGY EFFICIENCY	TABLE C402.1.3 METAL BUILDING ROOFS R-30 CI WALLS ABOVE GRADE R-13 + R-13 CI				
SECTION NO.	DESCRIPTION				FLOORS		R-7.5 CI R-10 CI		
2015 INTERNATIO	NAL BUILDING CODE (780 CMR 9TH EDITION)					(UNHEATED SLAB) DOORS (NON-SWINGING)	R-10 (24" BELOV R-4.75	<i>I</i> V)	
CHAPTER 1	FIRE PREVENTION M.G.L. c. 148 26G - CERTAIN NON RESIDENTIAL STRUCTURES THAT EXCEED 7,500 S	8.F.	COMPLIES - DOES NOT EXCEED 7,500 S.F.			402.1.4 DOORS (SWINGING) DOOR <14% GLAZING	U-0.37 U-0.31		
CHAPTER 3	USE AND OCCUPANCY		H-3		C402.3 F	OOFTOP SOLAR READINES	8		
	SECTION 302 CLASSIFICATION		- PRESENCE OF SODIUM HYPOCHLORITE, SODIUM HYDROXIDE, SODIUM FLOURIDE,	521 CMR ARCHITE					
			- SODIUM HYDROXIDE BEING UNSTABLE (REACTIVE) MATERIAL.	521 CMR ARCHITECTURAL ACCESS BOARD CHAPTER 2 PURPOSE PUBLIC BUILDINGS					
CHAPTER 4			AUTOMATIC FIRE DETECTION SYSTEM		PUBLIC	BUILDINGS			
			EMERGENCY ALARMS	CHEMICAL STORED	ON SITE:				
						BULK/DAY	VOLUME (GAL)	DIAN	
				SODIUM HYPOCH	ILORITE	BULK	300	35	
ACTUAL BUILDING HEIGHT IN FEET ABOVE GROUND PLANE			TYPE II-B	SODIUM HYPOCH	ILORITE	DAY	20	16	
	TABLE 504.3 - ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GROUND PLANE ACTUAL BUILDING HEIGHT IN FEET ABOVE GROUND PLANE	55 FT 34.5 FT		SODIUM HYPOCH		BULK	1000	64	
	TABLE 504.4 - ALLOWABLE NUMBER OF STORIES ABOVE GROUND PLANE	2				DAY	100	28	
	ACTUAL NUMBER OF STORIES ABOVE GROUND PLANE	1		SODIUM HYPOCH		SATURATOR - LARGE SATURATOR - SMALL	50	18	
		5,500 SF 2,944 SF				SATURATOR - SMALL	5		
HAPTER 6	TABLE 601 - FIRE RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (CONSTRUCTION TYPE II-B:	(HRS)	TYPE II-B	APPLICABLE CO	DDES STANI	DARDS AND REGULATIONS			
	PRIMARY STRUCTURALLY FRAME BEARING WALLS EXTERIOR	0 HRS		BUILDING		INTERNATIONAL BUILDING EDITION, WHICH IS AN AME			
	INTERIOR NON-BEARING WALLS AND PARTITIONS EXTERIOR INTERIOR	0 HRS 0 HRS 0 HRS		FIRE PROTECTI		CMR - BOARD OF FIRE PREV A 1 (FIRE CODE) 2015	ENTION REGULATIO	ONS, WH	
	FLOOR CONSTRUCTION AND SECONDARY MEMBERS ROOF CONSTRUCTION AND SECONDARY MEMBERS	0 HRS 0 HRS 0 HRS 0 HRS		PLUMBING	248	CMR - BOARD OF STATE EX	AMINERS OF PLUMBE	ERS AND	
CHAPTER 9	F 903.2.5.1 GENERAL	AUTOMATIC SPRINKLER SYSTEM	ELECTRICAL		CMR 12.00 MASSACHUSSET TION OF NFPA 70, NATIONAL		•		
	AN AUTOMATIC SPRINKLER SYSTEM SHALL BE INSTALLED IN GROUP H OCCUPANCIES		MECHANICAL	2015	INTERNATIONAL MECHANI	CAL CODE (IMC) 271 (CMR SH		
CHAPTER 10	TABLE 1004.1.2INDUSTRIAL AREAS = 100 GROSS OCCUPANT LOAD FACTOR1004.1.1CUMULATIVE OCCUPANT LOAD004.1.1004.1.1			ENERGY		CMR 13.00 - ENERGY EFFICI ISERVATION CODE (IECC)	ENCY, WHICH AMENI	DS THE	
	GAC FLOOR 2944/100 = 29.4 (~30) TOTAL CALCULATED LOAD = 30 ACTUAL OCCUPANT LOAD			ACCESSIBLITY	521	CMR - ARCHITECTURAL ACC	ESS BOARD (AAB) R	₹ULES &	
	TABLE 1006.2.1SPACES WITH ONE EXIT - F OCCUPANCY = MAX 49 OCCUPANTS, 7TRAVEL DISTANCE	75 FT		OTHER		IOUS NATIONAL FIRE PROT THE CODES LISTED ABOVE	ECTION AGENCY (NF	⁻ PA) CO[
	GAC FLOOR	75 FT							






	PLIANCE FOR NEW STRUCTION		K		ELI eople. Right				
				One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800					
				www.kle	infelder.com				
			REV	DESCRIPTION	DSN DWN	CHK APP	DATE		
DIAMETER (IN) HEIGHT (IN)								
35	78								
16 64	28 80								
28	43								
18	53								
11	13								
MASSACHUSETTS STATE BUILDING CODE 2015 IBC S, WHICH IS AN AMMENDED VERSION OF 3S AND GAS FITTERS WHICH IS AN AMENDED VERSION OF THE 2020 MR SHALL APPLY TO ALL SHEET METAL WORK S THE 2018 INTERNATIONAL ENERGY LES & REGULATIONS A) CODES AND STANDARDS AS REFERENCED			NOT TO SCALE ORIGINAL DRAWING SIZE IS 22 x 34						
			VILLAC	DE SUMMARY & GE STREET MILL LL 3 WATER TRI	LIS, MASSA		SETTS ITY		
DILET S ELEC 4 1 HOUR FIRE RATED PARTITION.				PFAS UPGRADES PRELIMINARY DESIGN					
) Z			PROJECT ISSUE DAT CURRENT DESIGNED DRAWN BY CHECKED	E SEPT 2023 REVISION BY KL, PM		\-2	4 of 5		





- A. GENERAL NOTES
- 1. ALL WORK MUST CONFORM TO THE REQUIREMENTS OF THE MASSACHUSETTS STATE BUILDING CODE, 9TH EDITION.
- 2. PROPOSED FIELD MODIFICATION, REVISIONS AND ADDITIONS TO THE DESIGN DRAWING MUST BE APPROVED BY THE ENGINEER, IN WRITING, BEFORE WORK BEGINS. ANY REQUEST TO DEVIATE FROM THE ENGINEER'S SPECIFIED DETAILS ON THE DESIGN DRAWING BY THE CONTRACTOR MUST BE SUBMITTED IN WRITING TO THE ENGINEER FOR APPROVAL.
- 3. CONTRACTOR MUST PROVIDE ALL MATERIAL, LABOR, EQUIPMENT, CONSUMABLES, AND ALL OTHER ITEMS REQUIRED TO COMPLETE THE WORK AS SPECIFIED ON THE DESIGN DRAWINGS, PROJECT SPECIFICATIONS, AND AS NECESSARY TO COMPLETE THE WORK.
- 4. CONTRACTOR MUST VISIT THE PROJECT SITE AND OBSERVE CONDITIONS FOR THE PROPOSED CONSTRUCTION. ANY DISCREPANCY BETWEEN THE DESIGN DRAWINGS AND ACTUAL SITE CONDITIONS MUST BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER, IN WRITING, FOR RESOLUTION PRIOR TO COMMENCEMENT OF THE WORK
- 5. COMPLETED SHOP DRAWINGS FOR ALL WORK MUST BE SUBMITTED FOR REVIEW AND APPROVAL PRIOR TO THE START OF FABRICATION AND CONSTRUCTION ACTIVITIES.
- 6. UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS, ALL DESIGN, MATERIALS, FABRICATION, TESTING, AND CONSTRUCTION MUST COMPLY WITH THE FOLLOWING NOTES, REFERENCED CODES, SPECIFICATIONS AND STANDARDS. SHOULD THESE NOTES, CODES, SPECIFICATIONS OR STANDARDS CONFLICT, THE STRICTEST PROVISION MUST GOVERN UNTIL WRITTEN CLARIFICATION IS PROVIDED TO THE CONTRACTOR.
- 7. THE STRUCTURAL DRAWINGS MUST BE USED IN CONJUNCTION WITH ALL OTHER DESIGN DRAWINGS AND SPECIFICATIONS. REFER TO PROCESS EQUIPMENT, ARCHITECTURAL, CIVIL, MECHANICAL, HVAC, PLUMBING, ELECTRICAL, AND FIRE PROTECTION DRAWINGS FOR LOCATIONS, DIMENSIONS, AND DETAILS OF OPENINGS, SLEEVES, EMBEDMENTS, AND EQUIPMENT INSERTS, PADS, CURBS, DEPRESSIONS, ANCHOR BOLTS, EXTERIOR GRADING AND OTHER PROJECT REQUIREMENTS NOT SPECIFIED ON STRUCTURAL DRAWINGS.
- 8. STRUCTURAL REQUIREMENTS TO SECURE FIXED EQUIPMENT. INCLUDING BUT NOT LIMITED TO ROOF TOP UNITS. EQUIPMENT AND EMBEDMENTS, ARE INCIDENTAL TO THE REQUIREMENTS OF A SPECIFIC EQUIPMENT MANUFACTURER ALL WORK MUST CONFORM TO APPROVED EQUIPMENT MANUFACTURER'S SHOP DRAWINGS AND INSTALLATION INSTRUCTIONS. THE CONTRACTOR MUST SUBMIT TO THE ENGINEER FOR REVIEW AND APPROVAL ANY REQUIRED MODIFICATIONS TO ACCOMMODATE APPROVED EQUIPMENT. SUCH MODIFICATIONS MUST BE MADE AT NO COST TO THE OWNER.
- B. PROTECTION OF EXISTING STRUCTURES NOTES
- 1. EXISTING STRUCTURES, CONDUITS, UTILITY LINES AND OTHER UTILITIES MUST BE IDENTIFIED BY THE OWNER AND CONTRACTOR AND CLEARLY MARKED ON-SITE PRIOR TO INITIATING CONSTRUCTION. IN THE EVENT THAT ANY UNMARKED OR UNKNOWN STRUCTURE/UTILITY ARE UNCOVERED BY THE CONTRACTOR, WORK MUST HALT AND THE CONTRACTOR MUST REPORT ITS FINDINGS TO THE OWNER'S SITE REPRESENTATIVE FOR INSTRUCTIONS BEFORE PROCEEDING FURTHER. THE EXISTING STRUCTURES AND UTILITIES WHICH ARE ADJACENT TO THE SITE AND THOSE TO REMAIN WITHIN THE LIMITS OF THE WORK MUST BE PROTECTED AGAINST DAMAGE. THE CONTRACTOR WILL BE FULLY RESPONSIBLE IN THE EVENT OF REMOVAL OF OR DAMAGE TO ANY EXISTING OBJECTS BY THE CONTRACTOR'S PERSONNEL WHICH ARE INTENDED BY THE OWNER TO REMAIN IN PLACE.
- C. DESIGN CRITERIA NOTES
- 1. STRUCTURES ARE DESIGNED IN ACCORDANCE WITH THE MASSACHUSETTS STATE BUILDING CODE, 9TH EDITION.
- 2. DEAD LOAD: WEIGHT OF BUILDING COMPONENTS SPECIFIED ON THE DRAWINGS

MEP AND FP 10 PSF	D ON THE DRAWINGS
3. LIVE LOAD:	
INTERIOR SLABS	250 PSF
LIGHT STORAGE	. 125 PSF
HEAVY STORAGE	
FLOOR PLATES AND GRADING	
4. ROOF LIVE LOAD: MAINTENANCE:	20PSF
5. SNOW LOAD:	
GROUND SNOW	D = 10 DSE
FLAT-ROOF SNOW	
EXPOSURE FACTOR	
THERMAL FACTOR	
IMPORTANCE FACTOR	$I_{s} = 1.0$
SLOPE FACTOR	$C_{s} = 1.0$
DRIFT SURCHARGE	
DRIFT WIDTH	
	. W - 0.0 FT
6. WIND LOAD:	
RISK CATEGORY	
ULTIMATE WIND SPEED	
NOMINAL WIND SPEED	$V_{asd} = 108 \text{ MPH}$
EXPOSURE CATEGORY	
DIRECTIONALITY FACTOR	
GUST EFFECT FACTOR	
TOPOGRAPHIC FACTOR	
INTERNAL PRESSURE COEFFICIENT	GC _{pi} = 0.55
7. SEISMIC LOAD: RISK CATEGORY IMPORTANCE FACTOR SITE CLASSIFICATION SEISMIC DESIGN CATEGORY RESPONSE MODIFICATION FACTOR DESIGN SPECTRAL RESPONSES	I _e = 1.0 E C R = 3
SEISMIC FORCE RESISTING SYSTEM	
SEISMIC FORCE RESISTING SYSTEM	
ANALYSIS PROCEDURE	. EQUIVALENT LATERAL FORCE
8. GEOTECHNICAL: GEOTECHNICAL INVESTIGATION ON GOING.	
REFERENCED SOIL PROPERTIES FROM GEOTE APPROXIMATE GROUND WATER ELEVATION SOIL BEARING CAPACITY (ALLOWABLE) COEFFICIENT OF FRICTION SUBGRADE MODULUS	BELOW GRADE
9. FLOOD:	
DESIGN CLASS	
LOWEST FLOOR ELEVATION	
DRY FLOODPROOFED ELEVATION	
DRT FLOODFROOFED ELEVATION	
10. RAIN:	
INTENSITY	i = 2.71 INCHES PER HR
····	

D. BUILDING ERECTION NOTES

1. THE CONTRACTOR SHALL PROVIDE, FURNISH, AND ERECT BUILDING INCLUDING ALL STRUCTURAL SUPPORTS (PRIMARY AND SECONDARY), ROOFING AND SIDING MATERIALS, DOORS, AND DOOR OPERATIONG EQUIPMENT.

E. CAST-IN-PLACE CONCRETE NOTES

- 1. ALL CONCRETE WORK AND MATERIALS MUST BE IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND THE CURRENT EDITION OF THE FOLLOWING STANDARDS:
- a. MASSACHUSETTS STATE BUILDING CODE (9TH EDITION)
- b. GUIDE TO MASS CONCRETE (ACI 207)
- c. SPECIFICATIONS FOR STRUCTURAL CONCRETE (ACI 301) d. HOT WEATHER CONCRETE REQUIREMENTS (ACI 305)
- e. COLD WEATHER CONCRETE REQUIREMENTS (ACI 306)
- f. BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318) a. BUILDING CODE REQUIREMENTS FOR ENVIRONMENTAL ENGINEERING CONCRETE
- STRUCTURES (ACI 350)
- h. RECOMMENDED PRACTICE FOR PLACING REINFORCING STEEL (CRSI)
- i. STRUCTURAL WELDING CODE REINFORCING STEEL (AWS D1.4) j. PROJECT SPECIFICATIONS
- k. OSHA STANDARDS 1910 & 1926
- I. ACI DETAILING MANUAL (SP-66)
- 2. SHOP DRAWINGS, SHOWING ALL FABRICATION DIMENSIONS AND LOCATIONS FOR PLACING OF THE REINFORCING STEEL AND ACCESSORIES, MUST BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL PRIOR TO ANY FABRICATION.
- 3. REINFORCING BARS MUST BE FABRICATED IN ACCORDANCE WITH THE STANDARD FABRICATED TOLERANCES SPECIFIED IN ACI 315, CHAPTER 4
- 4. NO ALUMINUM EMBEDMENT IN THE CONCRETE IS PERMITTED.
- 5. ALL EXPOSED CONCRETE EDGES MUST HAVE A 3/4", 45° CHAMFER UNLESS NOTED OTHERWISE.
- 6. ALL PERMANENTLY EXPOSED VERTICAL AND HORIZONTAL CONCRETE SURFACES MUST BE TREATED OR SEALED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND CONCRETE FINISH REQUIREMENTS.
- 7. UNLESS NOTED OTHERWISE STEEL REINFORCEMENT MUST CONFORM TO THE
- FOLLOWING STANDARDS: a. REINFORCING STEEL MUST BE DEFORMED BILLET STEEL CONFORMING TO ASTM A615, GRADE 60.
- b. WELDABLE REINFORCING STEEL MUST BE DEFORMED BILLET STEEL CONFORMING TO ASTM A706, GRADE 60.
- c. EPOXY COATED REINFORCING STEEL MUST BE DEFORMED BILLET STEEL
- CONFORMING TO ASTM A775, GRADE 60.
- d. WELD WIRE FABRIC (MESH) MUST CONFORM TO ASTM A185 AND MUST BE PROVIDED IN FLAT SHEETS (ROLLS NOT PERMITTED). e. UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS ALL REINFORCING STEEL IS
- UNCOATED (PLAIN) DEFORMED BARS. f. TIE ALL REINFORCING STEEL AND EMBEDMENTS SECURELY IN PLACE PRIOR TO PLACING CONCRETE. PROVIDE SUPPORTS TO MAINTAIN THE POSITION OF REINFORCEMENT WITHIN SPECIFIED TOLERANCES DURING ALL CONSTRUCTION ACTIVITIES. WET "STICKING" DOWELS, ANCHORS, ETC. INTO CONCRETE IS NOT
- PERMITTED. g. REINFORCING STEEL MUST BE DETAILED AND FABRICATED IN ACCORDANCE WITH ACI 315 "DETAILS AND DETAILING CONCRETE REINFORCEMENT".
- h. UNDIMENSIONED HOOKS AT ENDS OF REINFORCEMENT AND STIRRUPS MUST BE STANDARD HOOKS IN ACCORDANCE WITH ACI 318 UNLESS NOTED OTHERWISE. I. REINFORCING STEEL MUST BE SPLICED AS SPECIFIED ON THE DESIGN DRAWINGS OR AS APPROVED, IN WRITING, BY THE ENGINEER. WHEN SPLICE LENGTHS ARE NOT SPECIFIED ON THE DESIGN DRAWINGS THEY MUST BE THE MINIMUM LENGTHS
- DEFINED IN THE "TENSION LAP SPLICE LENGTH" TABLE. SPLICES NOT DEFINED ON THE DESIGN DRAWINGS MUST BE LAPPED IN ACCORDANCE WITH THE PROVISIONS OF ACI 318 FOR CLASS B SPLICES. . REINFORCING STEEL MUST BE CONTINUOUS THROUGH ALL CONSTRUCTION JOINTS,
- CORNERS, AND INTERSECTIONS UNLESS NOTED OTHERWISE. REINFORCING STEEL MUST NOT BE CONTINUOUS THROUGH SLAB-ON-GRADE CONTROL JOINTS. REINFORCING STEEL MUST BE LAPPED AT NECESSARY SPLICES OR HOOKED AT DISCONTINUOUS END WITH ACI 318 STANDARD HOOKS UNLESS NOTED OTHERWISE. k. FIELD WELDING OF CROSSING BARS BY TACK WELDING IS STRICTLY PROHIBITED.
- I. ALL REINFORCING STEEL MUST BE FREE FROM LOSE RUST, SCALE OR ANY FOREIGN MATERIAL PRIOR TO PLACING ANY CONCRETE.
- 8. PROVIDE ADDITIONAL REINFORCEMENT ALONG EACH SIDE OF OPENINGS AS SPECIFIED IN THE STANDARD DETAILS UNLESS NOTED OTHERWISE.
- 9. MECHANICAL REINFORCEMENT SPLICES SHALL BE PERMITTED SUBJECT TO THE CONTRACTOR PROPOSED LOCATIONS AND APPROVAL, IN WRITING, BY THE ENGINEER. IN ALL ENGINEER APPROVED INSTANCES, MECHANICAL SPLICES MUST DEVELOP AT A MINIMUM OF 125 PERCENT OF THE SPECIFIED YIELD STRENGTH OF THE REINFORCING BAR.

10. MINIMUM CONCRETE PROTECTIVE COVERING FOR REINFORCEMENT SHALL BE AS

- FOLLOW, UNLESS NOTED OTHERWISE:
- a. CONCRETE CAST AGAINST EARTH (NOT FORMED) b. CONCRETE EXPOSED TO EARTH OR WEATHER ...
- c. CONCRETE NOT EXPOSED TO EARTH OF WEATHER . .. 1 1/2"
- d. CONCRETE OVER OR IN-CONTACT WITH LIQUID ..
- 11. UNLESS NOTED OTHERWISE CONSTRUCTION, EXPANSION, AND CONTROL JOINTS MUST CONFORM TO THE FOLLOWING STANDARDS:
- a. HORIZONTAL CONSTRUCTION JOINTS ARE PERMITTED ONLY WHERE SPECIFIED ON THE DESIGN DRAWINGS. ALL OTHERS DEEMED NECESSARY, BY THE CONTRACTOR. MUST BE APPROVED, IN WRITING, BY THE ENGINEER.
- b. THE LOCATION OF VERTICAL CONSTRUCTION JOINTS MUST BE APPROVED, IN WRITING, BY THE ENGINEER. CONSTRUCTION JOINTS MUST BE ROUGHENED TO 1/4"
- AMPLITUDE IN ACCORDANCE WITH ICRI CSP STANDARDS. c. UNLESS NOTED OTHERWISE, PLACE VERTICAL CONTROL JOINTS IN RETAINING WALLS AT 20'-0" O.C. (MAX.), ¾" DEEP, V-CHAMFERED ON BOTH FACES. CONSTRUCTION
- JOINTS MUST COINCIDE WITH CONTROL JOINTS. d. THE DESIGNATION "C.J." INDICATES A CONSTRUCTION JOINT BETWEEN SUCCESSIVE CONCRETE PLACEMENTS.

12. A MINIMUM OF 72 HOURS MUST ELAPSE BETWEEN ADJACENT CONCRETE PLACEMENTS.

E. CAST-IN-PLACE CONCRETE NOTES (CONT.)

13. UNLESS NOTED OTHERWISE EMBEDDED ITEMS MUST CONFORM TO THE FOLLOWING STANDARDS:

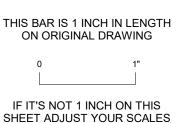
- a. CONCRETE WORK MUST BE COORDINATED WITH ALL PROCESS, EQUIPMENT WATERPROOFING, ARCHITECTURAL, MECHANICAL, HVAC, FIRE PROTECTION, CIVIL, PLUMBING, ELECTRICAL WORK AND VENDOR'S DRAWINGS FOR EMBEDDED ITEMS NOT SPECIFIED ON THE DESIGN DRAWINGS. THE CONTRACTOR IS FULLY RESPONSIBLE FOR COORDINATING AND PLACING ALL EMBEDDED ITEMS SPECIFIED ON THE DRAWINGS OR REQUIRED BY VARIOUS TRADES.
- b. PRIOR TO PLACEMENT OF ANY CONCRETE, ALL DESIGN DRAWINGS MUST BE REVIEWED TO ENSURE THAT ALL EMBEDDED ITEM ARE PROPERLY PLACED AND ANCHORED. THE CONTRACTOR MUST VERIFY INSTALLATION AND LOCATIONS OF ALL EMBEDDED ITEMS INCLUDING, BUT NOT NECESSARILY LIMITED TO, INSERTS, ANCHOR BOLTS, ANCHOR RODS, DOWELS, BLOCKOUTS, SLEEVES, EMBEDDED PIPING AND CONDUIT PRIOR TO CONCRETE PLACEMENT. c. ALL EMBEDDED PLATES MUST BE FLUSH WITH FINISH SURFACE OF CONCRETE. d. WATERSTOPS MUST BE OF SIZE AND TYPE AS SPECIFIED ON THE DESIGN DRAWINGS AND IN THE PROJECT SPECIFICATIONS AND MUST BE CONNECTED TO PROVIDE A
- CONTINUOUS WATERTIGHT SEAL.
- 14. CONCRETE FLOOR AND ROOF SLOPES MUST BE AN INTEGRAL PART OF FRAMED SLABS. SEPARATE CONCRETE FILL OR TOPPING SLABS ARE NOT PERMITTED UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS.
- 15. CONCRETE SURFACES SPECIFIED TO BE ROUGHENED MUST BE ROUGHENED TO 1/4" AMPLITUDE IN ACCORDANCE WITH ICRI CSP STANDARDS.

16. CONCRETE SLABS AND BEAMS MUST BE PLACED MONOLITHICALLY UNLESS NOTED OTHERWISE.

17. AIR-ENTRAIN ALL CONCRETE.

18. ALL CONCRETE MUST HAVE TYPE I OR II PORTLAND CEMENT CONFORMING TO ASTM C150

- 19. ALL CONCRETE MUST BE NOMINAL WEIGHT AND HAVE THE FOLLOWING MINIMUM STRENGTH UNLESS NOTED OTHERWISE: a. LEAN CONCRETE FOR FILL_1000 PSI @ 28 DAYS b. SPREAD FOOTING AND FOUNDATION WALLS 5000 PSI @ 28 DAYS
- c. SLAB-ON-GRADE 5000 PSI @ 28 DAYS
- d. HOUSEKEEPING PADS 5000 PSI @ 28 DAYS e. LIQUID CONTAINMENT STRUCTURES_5000 PSI @ 28 DAYS
- 20. ADHESIVE ANCHORING SYSTEM FOR DRILLED-IN REINFORCING BARS MAY BE PERMITTED SUBJECT TO THE APPROVAL, IN WRITING, BY THE ENGINEER. WHEN APPLICATION IS APPROVED, THE ANCHORING SYSTEM MUST BE DESIGNED BY A PROFESSIONAL STRUCTURAL ENGINEER REGISTERED IN THE STATE HAVING AUTHORITY OF THE PROJECT THE ANCHORING SYSTEM MUST CONFORM TO THE REQUIREMENTS OF ICC-ES AC308 AND BE DESIGNED ACCORDING TO THE METHODS OUTLINES THEREIN AND BE CAPABLE DEVELOPING THE FULL YIELD STRENGTH OF THE BAR BASED ON THE RESULTS OF UNCONFINED PULL-OUT TESTING.
- F. POST-INSTALLED ANCHORS
- 1. THE CONTRACTOR MUST BE RESPONSIBLE TO POSITION AND INSTALL ALL POST-INSTALLED ANCHOR BOLTS TO THE LOCATIONS AND ELEVATIONS SPECIFIED ON THE DESIGN DRAWINGS, IN ACCORDANCE WITH THE REQUIREMENTS AND TOLERANCES OF THE PROJECT SPECIFICATION AND MANUFACTURER RECOMMENDATIONS. POST-INSTALLED ANCHORS MUST BE INSTALLED ONLY IN HARDENED, CURE CONCRETE THAT IS 28 DAYS OR OLDER.
- 2. DRILLED-IN ADHESIVE ANCHOR SYSTEM MUST BE HILTI HIT-RE 500V3, DIAMETER AND ANCHOR MATERIAL AS SPECIFIED ON THE DESIGN DRAWINGS, COMPLETED WITH THREADED ROD, NUT AND WASHER AS MANUFACTURED BY HILTI, INC., OR EQUAL AS APPROVED, IN WRITING, BY THE ENGINEER. ANCHORS MUST BE INSTALLED IN PROPERLY PREPARED AND CLEANED DRY HOLES, FREE OF STANDING WATER, MOISTURE, ETC. IN STRICT ACCORDANCE WITH MANUFACTURERS REQUIREMENTS.
- G. CAST-IN-PLACE ANCHOR BOLTS & EMBEDMENTS
- 1. THE CONTRACTOR IS RESPONSIBLE TO POSITION AND INSTALL ALL ANCHOR BOLTS AND EMBEDMENTS TO THE LOCATIONS AND ELEVATIONS SPECIFIED ON THE DESIGN DRAWINGS AND IN ACCORDANCE WITH THE REQUIREMENTS AND TOLERANCES OF THE PROJECT SPECIFICATIONS. ALL ANCHOR BOLTS AND EMBEDMENTS MUST BE RIGIDLY SECURED AND PROTECTED IN PLACE TO PREVENT MOVEMENT OR DAMAGE DURING CONCRETE PLACEMENT OPERATIONS WITH TEMPLATES. RIGID TEMPLATES MUST REMAIN IN PLACE A MINIMUM OF 24 HOURS AFTER CONCRETE PLACEMENT HAS CEASED.
- 2. THE CONTRACTOR IS RESPONSIBLE TO PROTECT ALL ANCHOR BOLTS AND EMBEDMENTS FROM DAMAGE OR RUST DURING SHIPMENT AND STORAGE.
- 3. ANCHOR BOLTS MUST BE SHOP FABRICATED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS TO THE MATERIALS, DIAMETERS AND DIMENSIONS SPECIFIED ON THE DESIGN DRAWINGS. ANCHOR BOLTS MUST BE COMPLETE WITH WASHERS AND HEAVY HEX NUTS. ALL ANCHOR BOLT ASSEMBLIES MUST BE TAGGED WITH MARK NUMBER, INCLUDING STEEL MATERIAL GRADE IDENTIFICATION.
- 4. STRUCTURAL STEEL EMBEDMENT PLATES, BARS, SHAPES, AND ASSEMBLIES MUST BE FABRICATED IN ACCORDANCE WITH THE PROJECT SPECIFICATION MATERIALS AS SPECIFIED ON THE DESIGN DRAWINGS AND MUST CONFORM TO THE REQUIREMENTS OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC). ALL EMBEDMENT ASSEMBLIES MUST BE TAGGED WITH MARK NUMBER.
- 5. ANCHOR BOLT ASSEMBLIES AND STEEL EMBEDMENTS MUST BE HOT-DIP GALVANIZED IN ACCORDANCE WITH ASTM A123 AND ASTM A153, AS APPLICABLE.

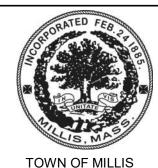


One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

NOT FOR CONSTRUCTION

	REVISIONS			
REV	DESCRIPTION	DSN	СНК	DATE
REV		DWN	APP	DATE
	1	1	I	1

SCALE VERIFICATION



ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

GENERAL NOTES SHEET 1 OF 2

VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMANARY DESIGN

DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

F	PERMIT RE	EVIEW SET
PROJECT NO.	20233667.002A	

DF

JFC

KM

_{DF} | SHEET

S-101

28 of 59

SEPT. 2023

ISSUE DATE

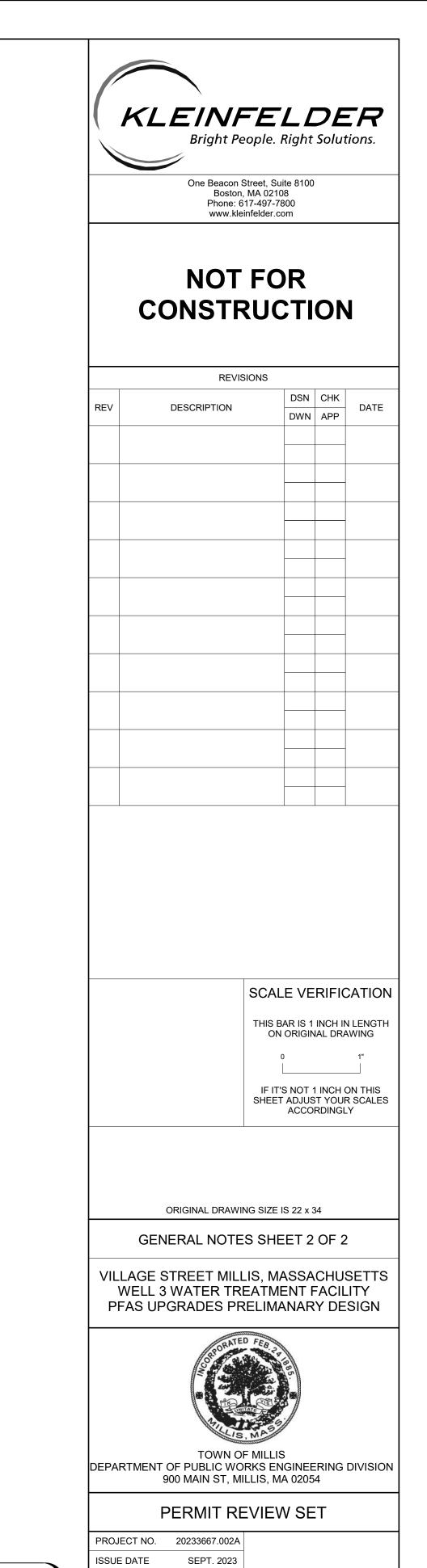
DESIGNED BY

DRAWN BY

CHECKED BY

APPROVED BY

CURRENT REVISION


BIM 360://Millis MA – D'Angelis Water Treatment Plant PFAs Upgrades/STRUCT_Well 3 WTP PFAS_2020_Central_JFColamet

9/26/2023 3:21:28 P

STRUCTURAL ABBREVIATIONS

	ADDITIONAL	MFR.
	ABOVE FINISHED FLOOR ALTERNATE	MAS. MAX.
.В.	ANCHOR BOLT	MECH.
	AND ANGLE	M.E.P. MEZZ.
PPROX.	APPROXIMATE(LY)	MID.
RCH.	ARCHITECT(URAL) AT	M.O. M.W.C.J.
SMT.	BASEMENT	MTL.
B. PL. BM.	BASE PLATE BEAM	MIN. MISC.
RG.	BEARING	N.S.
STWN. SLK(G).	BETWEEN BLOCK(ING)	N.S.N.M. N
D.	BOARD	N/A
ют. в.с.х.	BOTTOM BOTTOM CHORD EXTENSION	N.I.C. N.T.S.
s.O.	BOTTOM OF	# or NO.
8.O.F. 8.N.	BOTTOM OF FOOTING BOUNDARY NAILING	O.C. OPNG.
LDG.	BUILDING	OPP.
SRKT. CAMB.	BRACKET CAMBER	O.H. O.S.B.
		O.D.
C.I.P. Cor CL.	CAST-IN-PLACE CENTER LINE	O.F. OH.
C.D.	CITY CONSTRUCTION DIRECTIVE	PARA.
CLR. C.F.	CLEAR(ANCE) COLD FORMED	PART. PVMT.
OL.	COLUMN	PEN.
CONC. CMU	CONCRETE CONCRETE MASONRY UNIT	d PERIM.
ONN.	CONNECT(ION)	PERP.
CONSTR. C.J.	CONSTRUCTION CONSTRUCTION JOINT	Pc. PporPL.
ONT.	CONTINUE or CONTINUOUS	±
COORD. C.Y.	COORDINATE CUBIC YARD	PW. PT.
P.	DEEP	PVC.
or DEG. DEMO.	DEGREE DEMOL(ISH)(ITION)	LB(S). P.S.F.
DEPRESS. DIAG.	DEPRESS(ED)(ION)	P.S.I. P.A.F.
) or DIA.	DIAGONAL DIMENSION	P.A.F. P.C.
)BL.	DOUBLE DOWEL(S)	P.J.F. P.T.
0WL(S.) DN.	DOWN	R or RAD.
WG. A.	DRAWING EACH	REF. REINF.
.E.	EACH END	REQ'MTS.
F. G.	EACH FACE FOR EXAMPLE	REQ'D. RET.
S.	EACH SIDE	REV.
.W.	EACH WAY EAST	R.D. REG.
	EDGE OF DECK	R.O.
	EDGE OF SLAB EDGE NAILING	RBL. S.C.C.J.
E.	ELEVATION	SECT.
MBED. Q.	EMBEDMENT or EMBEDDED EQUAL	S.CONN. SW.
QUIP.	EQUIPMENT	S.W.
QUIV. ST.	EQUIVALENT ESTIMATE	SIM. S.O.G.
XIST. or (E)	EXISTING	S.C.
XP. .J.	EXPANSION EXPANSION JOINT	S SP(S).
XT.		SPEC.
AB. .O.C.	FABRICATOR or FABRICATION FACE OF CONCRETE	SQ. S.F.
.O.M. .O.S.	FACE OF MASONRY FACE OF STUD	S.I. STD.
.0.3. .0.W.	FACE OF WALL	SID. S.S.
S. RP.	FAR SIDE FIBER REINFORCED PLASTIC	STL. STIFF.
ÏN.	FINISHED	STRUCT.
.F. IN. GR.	FINISHED FLOOR FINISHED GRADE	SYM. TEMP.
.P.	FIRE PROOF(ING) or PROTECTION	THK.
LG. .D.	FLANGE FLOOR DRAIN	THRU T.J.
.в. Т.	FOOT or FEET	TOL.
TG. .S.	FOOTING FOOTING STEP	T.&G. T.C.J.
NDN.	FOUNDATION	T&B
.W.C.J. GALV.	FOUNDATION WALL CONTROL JOINT GALVANIZE(D)	T.C.X. T.O.
SA.	GAUGE, GAĠÉ	T.O.C.
GEN. G.C.	GENERAL GENERAL CONTRACT(OR)	T.O.S. T.O.W.
S.L.	GLUE LAMINATED	TOT.
GR. GRD.	GRADE GROUND	T TYP.
I.S.A.	HEADED STUD ANCHORS	U.N.O.
IGT. I.P.	HEIGHT HIGH POINT	V.I.F. VERT.
ISS	HOLLOW STRUCTURAL SECTIONS	V.E.F.
ik. Ioriz.	HOOK(ED) HORIZONTAL	W.S.C.J. WT.
I.E.F.	HORIZONTAL EACH FACE	W
IDG N	HOT-DIP GALVANIZE INCH(ES)	W. WF
NFO.	INFORMÁTION	W.W.F.
D. F.	INSIDE DIAMETER INSIDE FACE	W/ W/O
NT.	INTERIOR	W.P.
J. NV.	ISOLATION JOINT INVERT	WD.
Т.	JOINT	
ST.	JOIST KIPS	
O.	KNOCKOUT	
	LAG BOLT LAMINATED VENEER LUMBER	
.F.	LINEAR FOOT	
	LINEAR INCH LIGHTWEIGHT	
.L.	LIVE LOAD	
G. LH	LONG LONG LEG HORIZONTAL	
LV	LONG LEG VERTICAL	
.S.H. .S.V.	LONG SLOTTED HORIZONTAL LONG SLOTTED VERTICAL	
.W. .P.	LONG WAY LOW POINT	

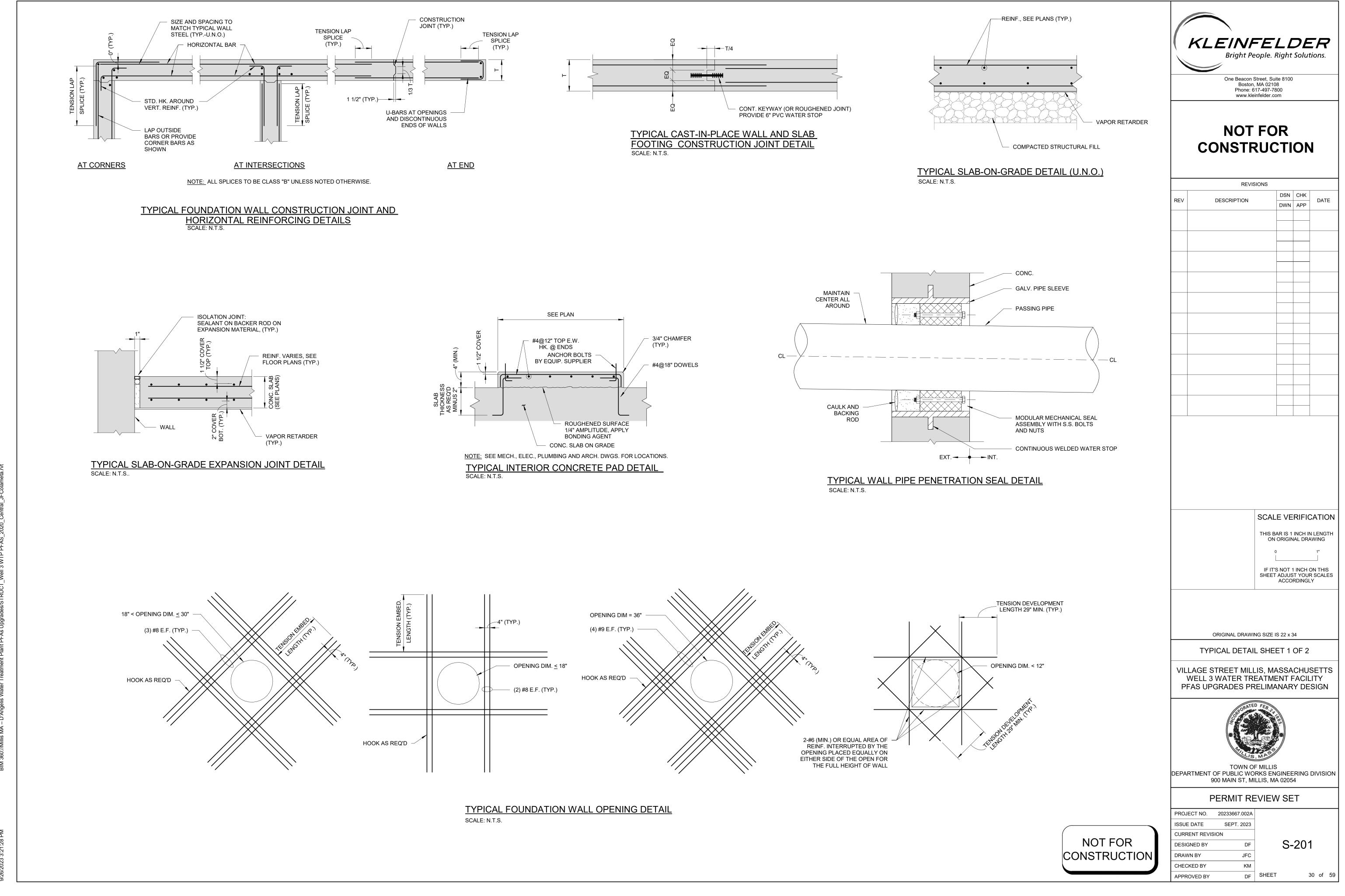
MANUFACTURE(R) (D) MASONRY MAXIMUM MECHANICAL MECHANICAL/ELECTRICAL/PLUMBING MEZZANINE MIDDLE MASONRY OPENING MASONRY WALL CONTROL JOINT METAL MINIMUM MISCELLANEOUS NEAR SIDE NO SHRINK NON METALLIC NORTH NOT APPLICABLE NOT IN CONTRACT NOT TO SCALE NUMBER ON CENTER OPENING OPPOSITE OPPOSITE HAND ORIENTED STRAND BOARD OUTSIDE DIAMETER OUTSIDE FACE OVERHEAD PARALLEL PARTITION PAVEMENT PENETRATION PENNY, NAIL PERIMETER PERPENDICULAR PIECE PLATE PLUS OR MINUS PLYWOOD POINT POLYVINYL CHLORIDE POUND(S) POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH POWER ACTUATED FASTENERS PRECAST CONCRETE PREFORMED JOINT FILLER PRESSURE TREATED RADIUS REFERENCE REINFORCE(D) (ING) REQUIREMENTS REQUIRED RETAINING REVIS(E) (ION) ROOF DRAIN ROOFING ROUGH OPENING RUBBLE SAWCUT CONTROL JOINT SECTION SHEAR CONNECTOR SHEARWALL SHORT WAY SIMILAR SLAB-ON-GRADE SLIP CRITICAL SOUTH SPACE(S) SPECIFICATION SQUARE SQUARE FOOT or FEET SQUARE INCH(ES) STANDARD STAINLESS STEEL STEEL STIFFENER STRUCTUR(E) (AL) SYMMETR(Y) (ICAL) TEMPORARÝ or TEMPERATURE THICK(EN) (ENED) (NESS) THROUGH TIE JOIST TOLERANCE TONGUE AND GROOVE TOOLED CONTROL JOINT TOP AND BOTTOM TOP CHORD EXTENSION TOP OF TOP OF CONCRETE TOP OF STEEL TOP OF WALL TOTAL TREAD or TON TYPICAL UNLESS NOTED OTHERWISE VERIFY IN FIELD VERTICAL VERTICAL EACH FACE WATERSTOPPED CONSTRUCTION JOINT WEIGHT WEST WIDE WIDE FLANGE WELDED WIRE FABRIC WITH WITH OUT WORKING POINT WOOD

CURRENT REVISION

DF

JFC

KM


DF SHEET

DESIGNED BY

APPROVED BY

DRAWN BY CHECKED BY S-102

29 of 59

		TENSI	ON LAF	P SPLIC	E LEN	GTHS -	GRAD	E 60 U	NCOAT	ED BA	RS		
					f'c = 3,0	00 psi or Gl	REATER, N	ORMAL WE	EIGHT CON	CRETE			
			f'c = 3	,000 psi			f'c = 4	,000 psi			f'c = 5	,000 psi	
BAR SIZE DESIGNATION	LAP CLASS	ТОР	BARS	OTHEF	R BARS	ТОР	BARS	OTHER	RBARS	TOP	BARS	OTHEF	R BARS
		CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2
	А	22	32	17	25	19	28	15	22	17	25	13	19
#3	В	28	42	22	32	24	36	19	28	22	33	17	25
	Α	29	43	22	33	25	37	19	29	22	33	17	26
#4	В	37	56	29	43	32	48	25	37	29	43	22	33
	А	36	54	28	41	31	47	24	36	28	42	22	32
#5	В	47	70	36	54	40	60	31	47	36	54	28	42
"0	Α	43	64	33	50	37	56	29	43	33	50	26	38
#6	В	56	84	43	64	48	72	37	56	43	65	33	50
	А	63	94	48	72	54	81	42	63	49	73	37	56
#7	В	81	122	63	94	70	106	54	81	63	94	49	73
#0	А	72	107	55	82	62	93	48	72	55	83	43	64
#8	В	93	139	72	107	80	121	62	93	72	108	55	83
110	А	81	121	62	93	70	105	54	81	63	94	48	72
#9	В	105	157	81	121	91	136	70	105	81	122	63	94
#10	А	91	136	70	105	79	118	61	91	70	105	54	81
#10	В	118	177	91	136	102	153	79	118	91	137	70	105
ША А	А	101	151	78	116	87	131	67	101	78	117	60	90
#11	В	131	196	101	151	113	170	87	131	101	152	78	117
#14	N/A	121	181	93	139	105	157	81	121	94	140	72	108
#18	N/A	161	241	124	186	139	209	107	161	125	187	96	144

NOTES:

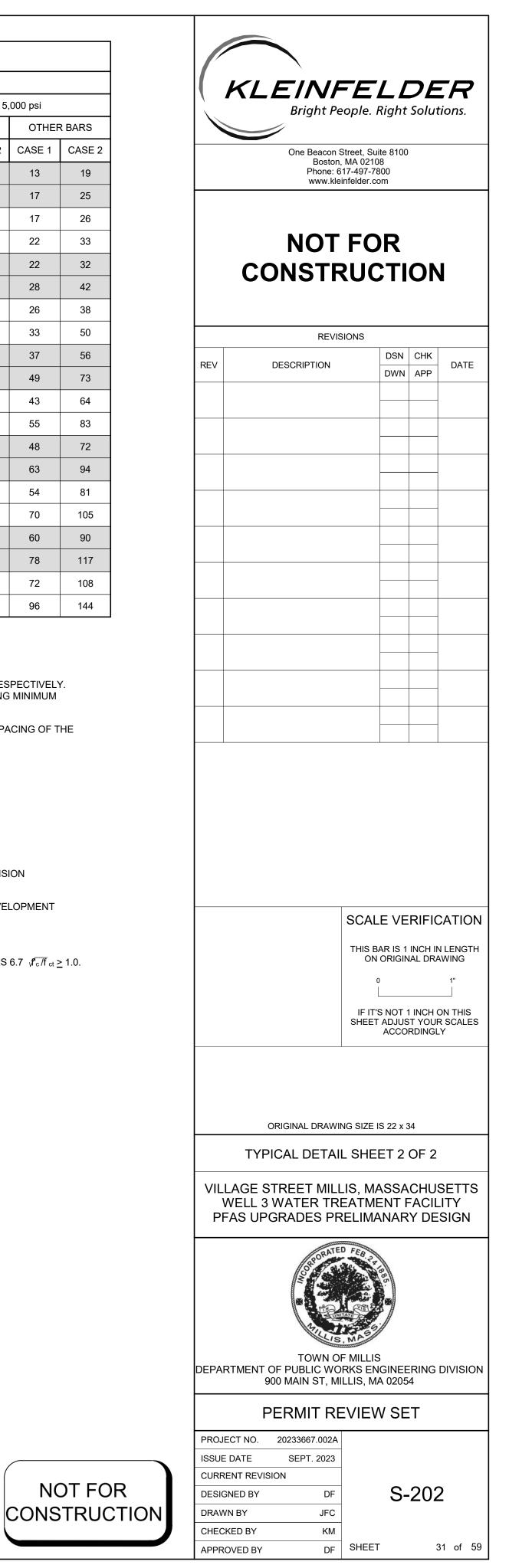
1. TABULATED VALUES ARE BASED ON GRADE 60 REINFORCING BARS AND NORMAL WEIGHT CONCRETE.

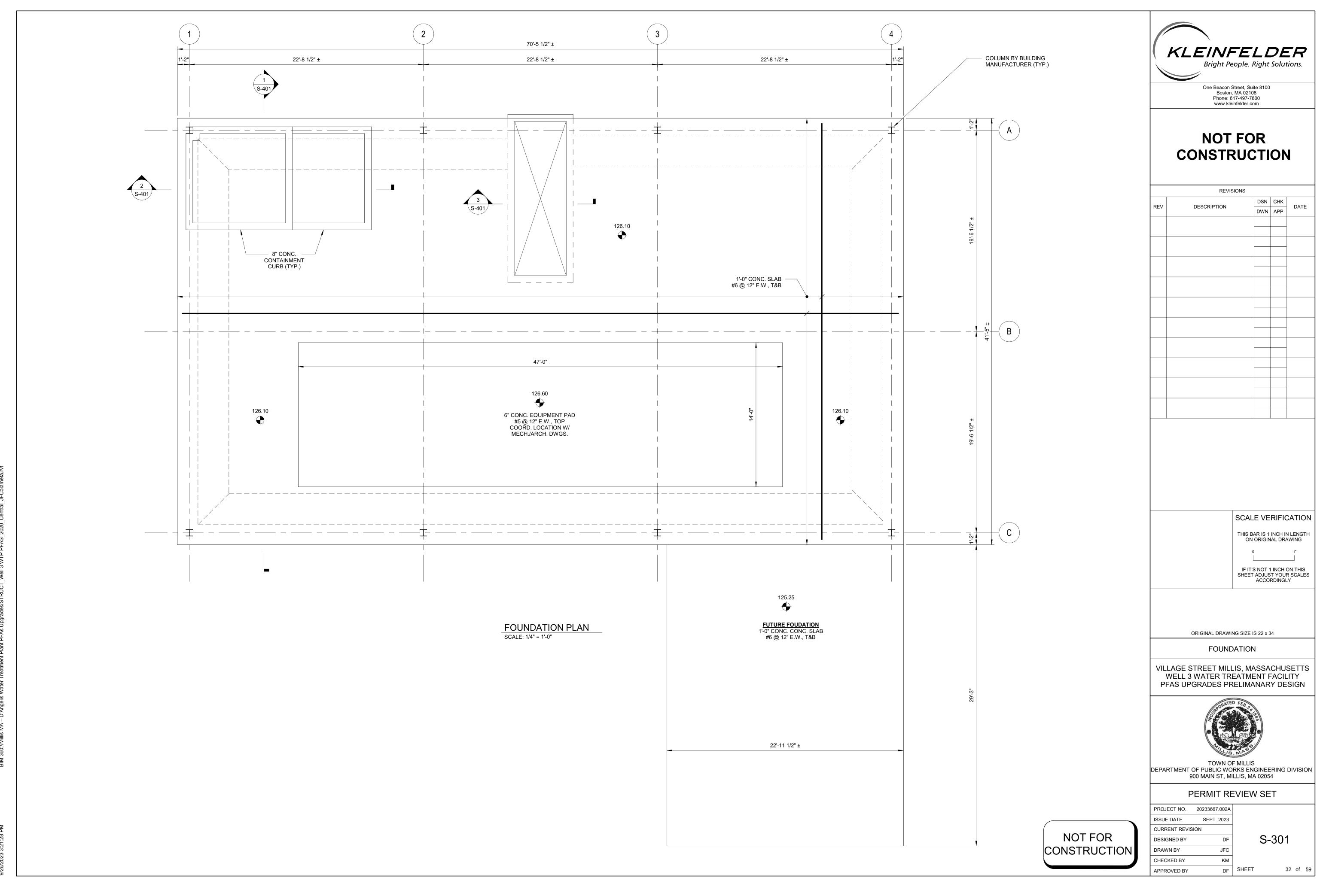
2. TENSION DEVELOPMENT LENGTHS AND TENSION LAP SPLICE LENGTHS ARE BASED ON ACI 318-14, SECTION 12.2.2 AND 12.15, RESPECTIVELY. TABULATED VALUES FOR BEAMS OR COLUMNS ARE BASED ON TRANSVERSE REINFORCEMENT AND CONCRETE COVER MEETING MINIMUM CODE REQUIREMENTS. LENGTHS ARE IN INCHES.

3. CASES 1 AND 2, WHICH DEPEND ON THE TYPE OF STRUCTURAL ELEMENT, CONCRETE COVER, AND THE CENTER-TO-CENTER SPACING OF THE BARS, ARE DEFINED AS:

	BEAMS or COLUMNS	CASE 1	COVER AT LEAST 1db AND CTRCTR. SPACING AT LEAST 2db
		CASE 2	COVER LESS THAN 1db AND CTRCTR. SPACING LESS THAN 2db
	ALL OTHERS	CASE 1	COVER AT LEAST 1db AND CTRCTR. SPACING AT LEAST 3db
		CASE 2	COVER LESS THAN 1db AND CTRCTR. SPACING LESS THAN 3db

4. LAP CLASS A VALUES ARE THE REQUIRED TENSION DEVELOPMENT LENGTHS, Ld; LAP SPLICE LENGTHS ARE MULTIPLES OF TENSION DEVELOPMENT LENGTHS; CLASS A - $1.0L_d$ AND CLASS B = $1.3L_d$ (ACE 318-02, SECTION 12.15.1).

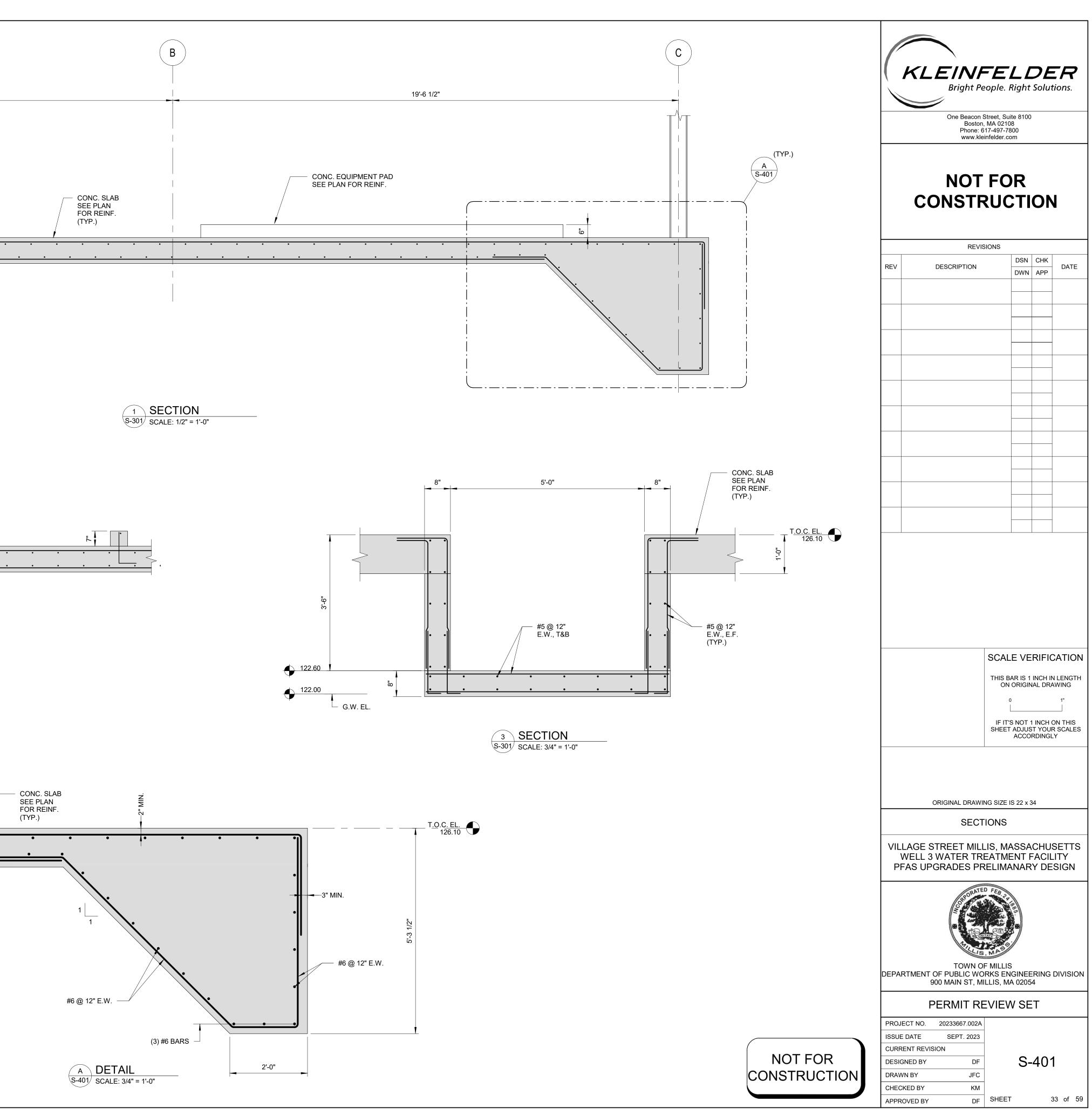

5. LAP SPLICES OF #14 or #18 BARS ARE NOT PERMITTED. THE TABULATED VALUES FOR THOSE BAR SIZES ARE THE TENSION DEVELOPMENT LENGTHS.

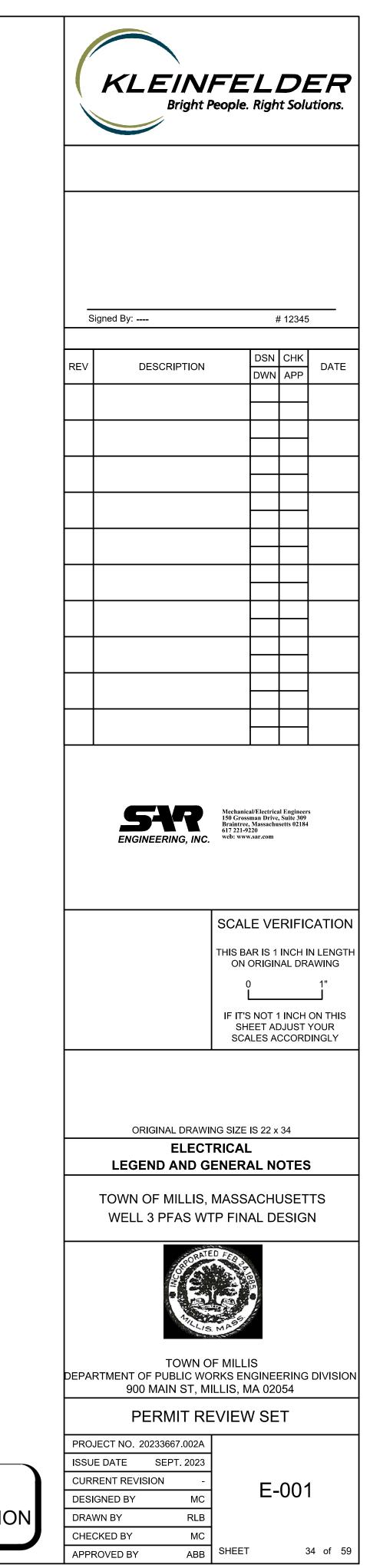

6. TOP BARS ARE HORIZONTAL BARS WITH MORE THAN 12 INCHES OF CONCRETE CAST BELOW THE BARS.

7. FOR LIGHTWEIGHT AGGREGATE CONCRETE, MULTIPLY THE TABULATED VALUES BY 1.3; or WHEN f_{ct} IS SPECIFIED, THE FACTOR IS 6.7 $\sqrt[f]{c_r/f}$ ct \geq 1.0.

8. FOR EPOXY-COATED BARS, MULTIPLY THE TABULATED VALUES BY ONE OF THE FOLLOWING FACTORS:

CONCRETE COVER AND SPACING	TOP BARS	OTHER BARS
COVER < $3d_b$ or CTRCTR. SPACING > $7d_b$	1.7 / 1.3 - 1.31	1.50
COVER \leq 3db or CTRCTR. SPACING \leq 7db	1.20	1.20




Α 19'-6 1/2" 8" CONC.
 CONTAINMENT
 CURB (BEYOND) 8" CONC.
 CONTAINMENT
 CURB T.O.C. EL. 126.10 -3 120.81 2'-0" (TYP.) 1 8" CONC.
 CONTAINMENT
 CURB (TYP.) T.O.C. EL. 126.10 120.81 2'-0" -(TYP.) 2 SECTION S-301 SCALE: 1/2" = 1'-0"

BIM 360://Millis MA – D'Angelis Water Treatment Plant PFAs Upgrades/STRUCT_Well 3 WTP PFAS_2020_Central_JFColameta.

26/2023 3:21:28 F

	ELECTRICAL SYMBOLS		ELECTRICAL SYMBOLS	FI	RE ALARM / SECURITY SYSTEM SYMBOLS
	LINEAR LIGHTING FIXTURES "F1" INDICATES FIXTURE TYPE – TYPICAL FOR ALL FIXTURES "1" INDICATES CIRCUIT NUMBER – TYPICAL FOR ALL FIXTURES "a" INDICATES THE SWITCH CONTROL – TYPICAL FOR ALL FIXTURES WALL MOUNTED LIGHTING FIXTURE. SURFACE OR PENDANT MOUNTED FIXTURE. EMERGENCY EXIT SIGN EMERGENCY LIGHTING BATTERY UNIT WITH TWO LIGHT HEADS REMOTE EMERGENCY LIGHTING UNIT WITH TWO LIGHTING HEADS PROVIDE 3/4", 2#10, 1#10GND TO NEAREST THE EMEGENCY LIGHTING BATTERY UNIT		NORMALY OPEN RELAY CONTACT NORMALLY CLOSED RELAY CONTACT OPERATOR PUSH BUTTON NORMALLY OPEN CONTACT OPERATOR PUSH BUTTON NORMALLY CLOSED CONTACT PRESSURE SWITCH – CLOSES ON HIGH PRESSURE PRESSURE SWITCH – CLOSES ON LOW PRESSURE	E E E C C S S C C C C C C C C C C C C C	MANUAL FIRE ALARM STATION FIRE ALARM AUDIO/VISUAL DEVICE FIRE ALARM VISUAL ONLY DEVICE FIRE ALARM BEACON SMOKE DETECTOR DUCT SMOKE DETECTOR REMOTE TEST STATION AND ALARM FOR DUCT SMOKE DETECTOR HEAT DETECTOR, COMBINATION RATE-OF-RISE AND FIXED TEMPERATURE
S _a S ₂ S _{3a} S _{4a} S ^{BG} TC	SINGLE POLE SWITCH 120V, 20A "a" INDICATES THE SWITCH CONTROL 2-POLE SWITCH 120V, 20A 1 POLE FOR ROOM LIGHT FIXTURES, 1-POLE FOR EXHAUST FAN CONTROL 3-WAY SWITCH 120V, 20A "a" INDICATES THE SWITCH CONTROL 4-WAY SWITCH 120V, 20A "a" INDICATES THE SWITCH CONTROL BREAK GLASSS STATION DIGITAL TIME CLOCK SWITCH		 UNDERGROUND CONDUIT DUCT BANK HOMERUN DESIGNATION TO PANEL LP1 CIRCUIT #1, WITH THE FOLOWING CONDUIT/WIRES UNLESS OTHERWISE NOTED: 3/4"C WITH 2#12, 1#12GND FOR 20AMP SINGLE PHASE CIRCUITS AND ELECTRIC UNIT HEATER THERMOSTAT CONTROL 3/4"C WITH 3#12, 1#12GND FOR 20AMP THREE PHASE CIRCUITS. 3/4"C WITH 3#12, 1#10GND FOR 30AMP SINGLE PHASE CIRCUITS. 3/4"C WITH 3#10, 1#10GND FOR 30AMP THREE PHASE CIRCUITS. 3/4"C WITH 2#8, 1#10GND FOR 40AMP & 50AMP SINGLE PHASE CIRCUITS. 3/4"C WITH 3#8, 1#10GND FOR 40AMP & 50AMP THREE PHASE CIRCUITS. 3/4"C WITH 3#8, 1#10GND FOR 40AMP & 50AMP THREE PHASE CIRCUITS. SURGE PROTECTION DEVICE 	C M C FACP FAA C FAA C DACT	CARBON MONOXIDE DETECTOR INPUT MONITORING MODULE RELAY CONTROL MODULE FIRE ALARM CONTROL PANEL FIRE ALARM ANNUNCIATOR PANEL CELLUAR DIGITAL ALARM COMMUNICATOR TRANSMITTER MASTER BOX
TM OC S PM OO PM OF	MECHANICAL TIMER SWITCH WALL MOUNTED DUAL TECHNOLOGY OCCUPANCY SENSOR/SWITCH LOW VOLTAGE SWITCH COMBINATION PHOTOCELL/MOTION DETECTOR SENSOR CEILING MOUNTED DUAL TECHNOLOGY OCCUPANCY SENSOR DUPLEX RECEPTACLE, WEATHER-RESISTANT 120V, 20A WITH WEATHERPROOF COVER, "GF" INDICATES GROUND FAULT TYPE "1" INDICATES CIRCUIT NUMBER – TYPICAL FOR ALL RECEPTACLES	(H) E) <u>20</u>) 100 GFCI	UTILITY POLE UTILITY HANDHOLE, "E" REPRESENTS ELECTRICAL HANDHOLE, "C" REPRESENT COMMUNICATION HANDHOLE MOLDED CASE CIRCUIT BREAKER, 3–POLE UNLESS OTHERWISE INDICATED, "20" INDICATES TRIP AMPERE RATING, "100" INDCATES FRAME SIZE, "GFCI" INDICATES CIRCUIT BREAKER TO HAVE GROUND FAULT CIRCUIT INTERRUPT DRY TYPE TRANSFORMER	K FS TS FB SS KP S	KEY DEPOSITORY - KNOX BOX FLOW SWITCH TAMPER SWITCH 24V ELECTRIC SPRINKLER BELL, PROVIDED BY FIRE PROTECTION FSB, PROVIDE AND MOUNT IN WEATHERPROOF BACKBOX MAGNETIC DOOR SWITCH KEY PAD SECURITY ALARM CONTROL PANEL
₽ ₽ ^{₩₽} ₽ _{TL} □ ¹ ₃₀ E ¹ ₂₀	DUPLEX RECEPTACLE 120V, 20A (2) DUPLEX (QUAD) RECEPTACLES, 120V, 20A "WP" INDICATES WITH WEATHERPROOF COVER SIMPLEX RECEPTACLE, WEATHER-RESISTANT 120V, 20A WITH WEATHERPROOF COVER "TL" INDICATES TWIST LOCK TYPE UNFUSED DISCONNECT SWITCH, "30" INDICATES 30 AMP RATING, PROVIDE 3-POLE, UNLESS OTHERWISE INDICATED. FUSED DISCONNECT SWITCH, "20" INDICATES 20 AMP FUSE RATING, PROVIDE 3-POLE UNLESS OTHERWISE INDICATED.	⊙ ⊥ 10 √xx OS-XXXX YYY	3/4"\$ X 10'-0" COPPER CLAD GROUND ROD BUILDING GROUNDING SYSTEM MOTOR, "10" INDICATES HORSEPOWER RATING CABLE/CONDUIT DESIGNATION, "XX" REFERS CABLE CONDUIT REFERENCE, REFER TO CABLE/CONDUIT AND DUCT/CABLE SCHEDULES. OPERATOR STATION (SUPPLIED BY DIV. 16 UNO), "XXXX" REFERS TO TAGNAME ID, "YYY" REFERS TO THE TYPE OF OPERATOR STATION	1TV2D CCTV	TELE/DATA & CCTV SYMBOLS WALL MOUNTED DATA OUTLET, 2D INDICATES (2) CAT6 TERMINAL DATA CONNECTORS, 1T INDICATES (1) CAT6 TERMINAL TELEPHONE CONNECTOR CLOSED CIRCUIT TELEVISION CAMERA – PROVIDED BY DIV. 13 DIGITAL VIDEO RECORDING SERVER – PROVIDED BY DIV. 13 POWER OVER ETHERNET SWITCH – PROVIDED BY DIV. 13
	3-PHASE RECEPTACLE WALL MOUNTED COMBINATION MOTOR STARTER WITH MOTOR CIRCUIT PROTECTOR, "FVNR" INDICATES TYPE OF MOTOR STARTER MOTOR STARTER WITH MOTOR CIRCUIT PROTECTOR, "FVNR" INDICATES TYPE OF MOTOR STARTER	E O	UNLESS OTHERWISE NOTED INSTRUMENATION OR PROCESS EQUIPMENT (SUPPLIED BY OTHER DIVISIONS) "XX-XXXX" REFERS TO TAGNAME ID GENERATOR EMERGENCY STOP OCCUPIED/UNOCCUPIED SELECTOR SWITCH. (SUPPLIED BY DIV. 16)		CHEMICAL ALARM SYSTEM SYMBOLS MANUAL CHEMICAL ALARM STATION CHEMICAL ALARM AUDIO/VISUAL DEVICE CHEMICAL ALARM CONTROL PANEL
VFD Sm J H (R1) (CR1) (CR1) (M) (TR1)	ENCLOSED VARIABLE FREQUENCY DRIVE MANUAL MOTOR STARTER 12OV, 2OA JUNCTION BOX NON-UTILITY POLYMER CONCRETE HAND HOLE ALARM RELAY, "AR1" REFERS TO RELAY NAME DESIGNATION CONTROL RELAY, "CR1" REFERS TO RELAY NAME DESIGNATION MOTOR START RELAY TIMING RELAY, "TR1" REFERS TO RELAY NAME	T M S S S MPCP CFS ISBP ISBP	THERMOSTAT (SUPPLIED BY DIV. 15) MOTOR OPERATED DAMPER (SUPPLIED BY DIV. 15) MANUAL WALL SWITCH (BY DIV. 15) REFRIGERANT SENSOR (BY DIV. 15) METERING PUMP CONTROL PANEL (SUPPLIED BY DIV. 11) CHEMICAL FILL STATION (SUPPLIED BY DIV. 13) INTRINSICALLY SAFE BARRIER PANEL (SUPPLIED BY DIV. 13) ELECTRIC UNIT HEATER, "X" INDICATES UNIT ELECTRIC COIL RATING (SUPPLIED BY DIV. 15) EQUIPMENT CIRCUIT NUMBER DESIGNATION TO PANEL LP1-LP CIRCUIT #21,		

	GENERAL NOTES	
1.	GENERAL CONTRACTOR TO PROVIDE CONCRETE MOUNTING AND HOUSEKEEPING PADS ON ALL FLOOR OR GRADE MOUNTED ELECTRICAL EQUIPMENT, THE FOLLOWING	(2)1"C, 3#8, #10GND
	EQUIPMENT IS THE MINIMUM REQUIREMENT FOR HOUSEKEEPING PADS. ADDITIONAL PADS MAYBE REQUIRED BASED ON THE ELECTRICAL CONTRACTORS MOUNTING METHODS, ELECTRICAL CONTRACTOR SHALL COORDINATE WITH GENERAL CONTRACTOR FOR ALL	3/4" CE
	HOUSEKEEPING PAD SIZES AND LOCATIONS. 1.1. DRY TYPE TRANSFORMERS	AFF AFG
2.	ALL CONDUIT AND EQUIPMENT SHALL BE INSTALLED AND GROUNDED IN ACCORDANCE WITH THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE AND APPLICABLE LOCAL CODES.	AFG
3.	BONDING JUMPERS, CONDUIT CLAMPS AND POINTS OF ATTACHMENT ARE NOT SHOWN ON DRAWINGS. SIZE BONDING JUMPERS IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. THE POINTS OF ATTACHMENT OF THE GROUND CLAMPS SHALL BE ACCESSIBLE LOCATIONS.	ATS CR
4.	EQUIPMENT & CONDUIT INSTALLATIONS ARE SHOWN DIAGRAMMATICALLY ONLY AND SHALL BE	СР
	INSTALLED IN A MANNER TO PREVENT CONFLICTS WITH EQUIPMENT AND STRUCTURAL CONDITIONS. EXPOSED CONDUITS SHALL BE INSTALLED PARALLEL TO BEAMS AND WALLS.	DRG. DWG.
5.	CONDUITS SHALL BE TERMINATED SO AS TO PERMIT NEAT CONNECTIONS TO MOTORS AND OTHER EQUIPMENT.	EAN
6.	NO CONDUIT SMALLER THAN 3/4" PIPE SIZE NOR WIRE SMALLER THAN NO. 12 A.W.G. SHALL BE USED UNLESS OTHERWISE NOTED.	EC ETM
7.	RECEPTACLES AND SWITCHES SHALL BE MOUNTED 45" ABOVE FINISHED FLOOR.	FE
8.	THE WIRING AND BLOCK DIAGRAMS, QUANTITY AND SIZE OF WIRES AND CONDUIT REPRESENT A SUGGESTED ARRANGEMENT BASED UPON SELECTED STANDARD COMPONENTS OF ELECTRICAL AND PROCESS EQUIPMENT. MODIFICATIONS ACCEPTABLE TO THE ENGINEER MAY BE MADE BY THE	FIT
	CONTRACTOR TO ACCOMMODATE EQUIPMENT ACTUALLY PURCHASED. THE BASIC SEQUENCE AND METHOD OF CONTROL MUST BE MAINTAINED AS INDICATED ON THE DRAWINGS AND/OR SPECIFICATIONS.	FS
		FVNR
	DEMOLITION NOTES	GND, GRD
		НОА
1.	UNLESS OTHERWISE NOTED, ALL EXISTING ELECTRICAL SYSTEMS (POWER, LIGHTING, LOW VOLTAGE, CONTROLS, ETC) AND ASSOCIATED EQUIPMENT INDICATED WITH HATCH MARKS IS TO BE	HH J OR JB
	DEMOLISHED. DISCONNECT AND DE-ENERGIZE THE EQUIPMENT. REMOVE THE EQUIPMENT TO BE DEMOLISHED OR SALVAGED PER SECTION 02050. ALL CONTROL DEVICES, CONDUIT, CABLING, BOXES, SUPPORTS, ETC, ASSOCIATED WITH THE DEMOLISHED EQUIPMENT SHALL BE REMOVED. THE CONDUIT AND CABLING SHALL BE REMOVED BACK TO SOURCE.	JPB
2.	NO DEVICE OR EQUIPMENT INDICATED FOR DEMOLITION WILL BE REUSED OR SALVAGED UNLESS SPECIFICALLY NOTED AS SUCH. ALL EQUIPMENT REMOVED SHALL BE REMOVED FROM SITE AND	LE
	PROPERLY DISPOSED OF, PRIOR TO REMOVAL OF EQUIPMENT COORDINATE WITH OWNER FOR ANY EQUIPMENT THE OWNER WILL KEEP.	LL
3.	EXISTING EQUIPMENT INDICATED ON THE DEMOLITION PLANS ARE BASED ON SITE OBSERVATIONS AND IT IS NOT THE INTENTION OF THESE DRAWINGS TO SHOW ALL EQUIPMENT AND MATERIALS TO BE DISCONNECTED AND/OR REMOVED.	LS LT
4.	ALL UNDERGROUND CONDUIT SHALL BE CUT BELOW GRADE, CAPPED AND BACKFILLED WITH DIRT	MC
	TO MATCH GRADE. ALL CONDUIT STUBBING UP FROM CONCRETE SLAB SHALL BE CUT AND CAPPED AND SLAB LEVEL. ALL WIRING SHALL BE REMOVED COMPLETELY.	MCC MH
		MFR
		MS
		NTS OEM
		OH
		OL
		OS
		PB
		PBE
		PBL

ABBREVIATIONS INCH CONDUITS EACH CONDUIT AINING 3-#8 AWG WIRES AND) GROUND CONDUCTOR RGS RIGID GALVANIZED STEEL RVNR REDUCED VOLTAGE NON-REVERSING CONDUIT. NUMERAL DENOTES SIZE SPD SURGE SUPPRESSOR DEVICE FINISHED FLOOR SOV SOLENOID VALVE FINISHED GRADE SOFT STARTER s/s RELAY ΤB TERMINAL BOX ATIC TRANSFER SWITCH TD MOTOR TEMPERATURE DETECTOR ROL RELAY TR TIMING RELAY ROL PANEL TS TEMPERATURE SWITCH TSP TWISTED SHEILDED PAIR AS NOTED TSTW TWO SPEED TWO WINDING RICAL CONTRACTOR ΤΥΡ TYPICAL UG UNDERGROUND SED TIME METER UNO UNLESS OTHERWISE NOTED ELEMENT VFD VARIABLE FREQUENCY DRIVE NDICATOR TRANSMITTER WP WATER PROOF SWITCH WHM WATT HOUR UTILITY METER TRANSMITTER XFMR TRANSFORMER

VOLTAGE NON-REVERSING

IDING CONDUCTOR (EQUIPMENT)

-OFF-AUTOMATIC

. . . .

ION BOX USHBUTTON

ELEMENT

INDICATOR TRANSMITTER

EVEL

SWITCH

TRANSMITTER

R CONTROLLER (STARTER) R CONTROL CENTER

OLE

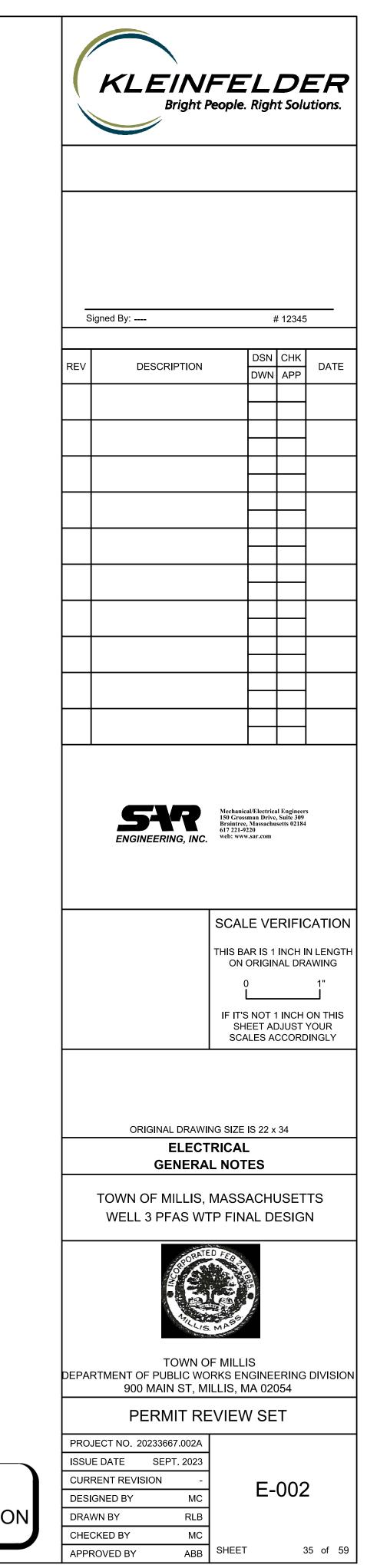
FACTURER

PBM

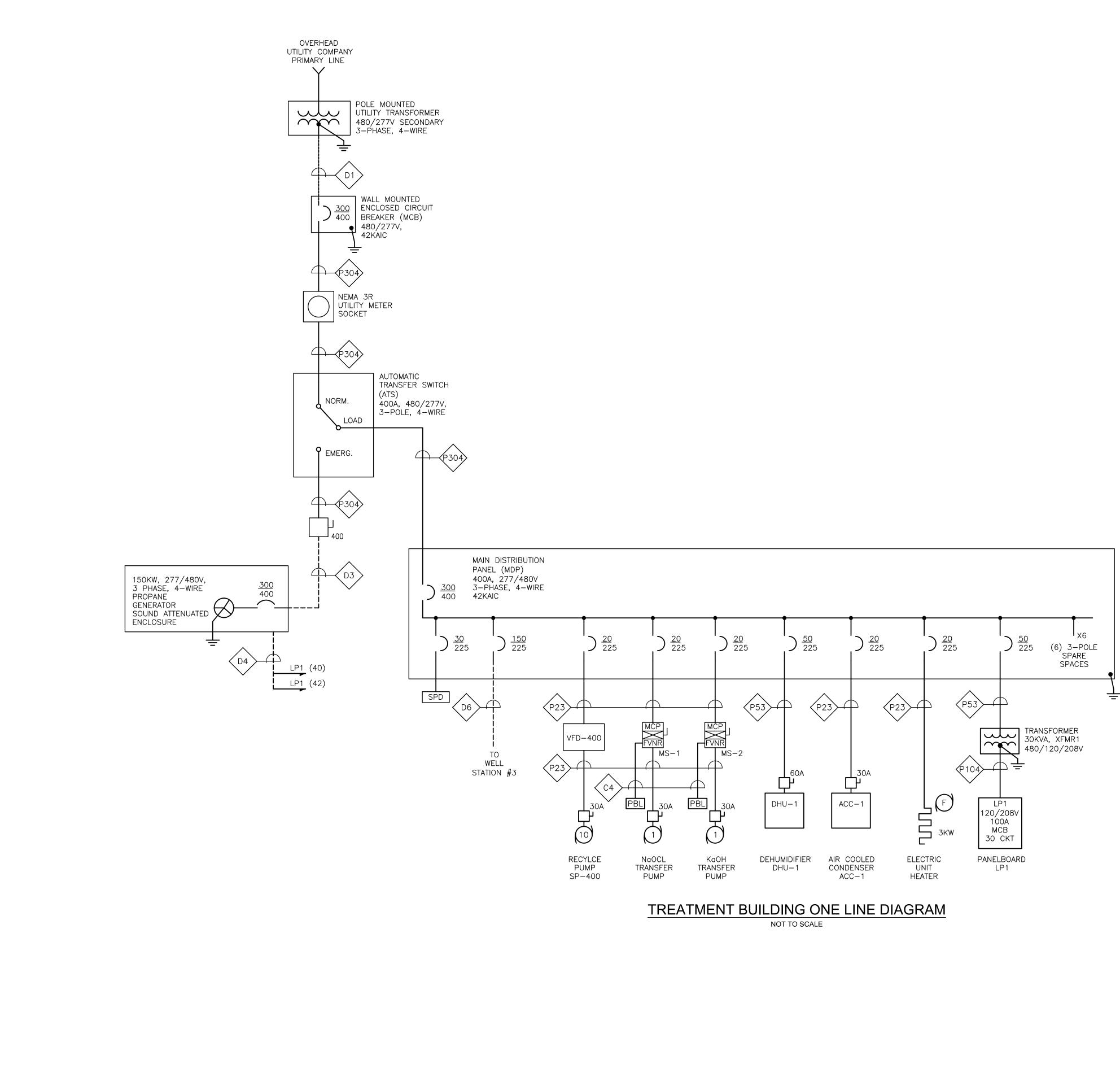
PIT

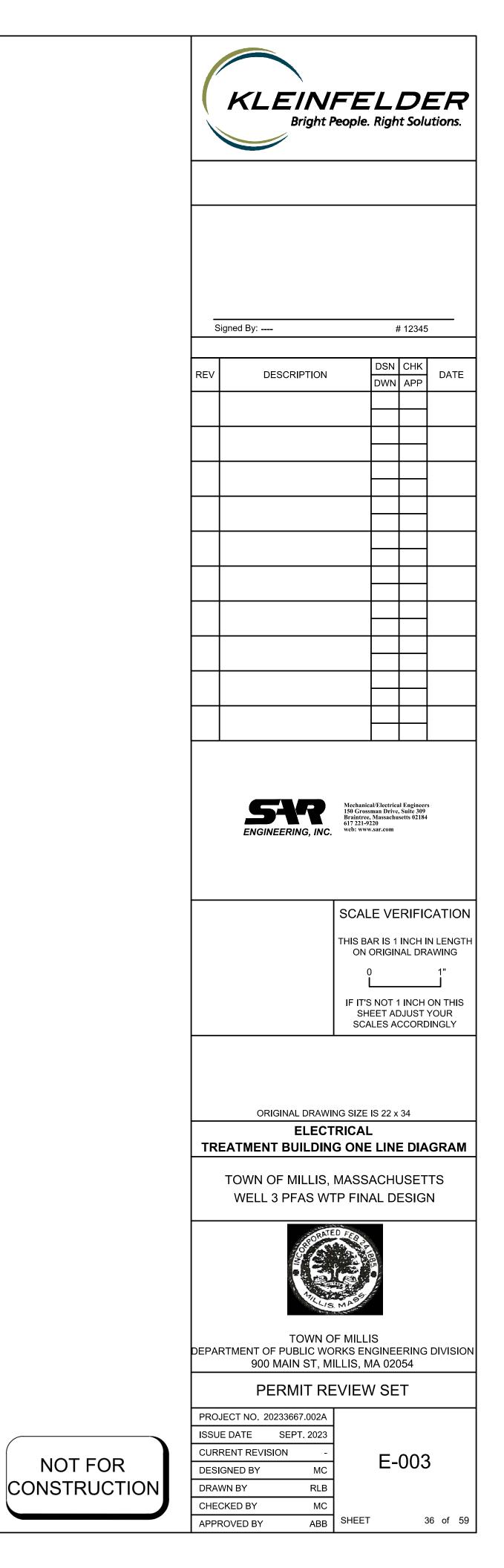
ΡL

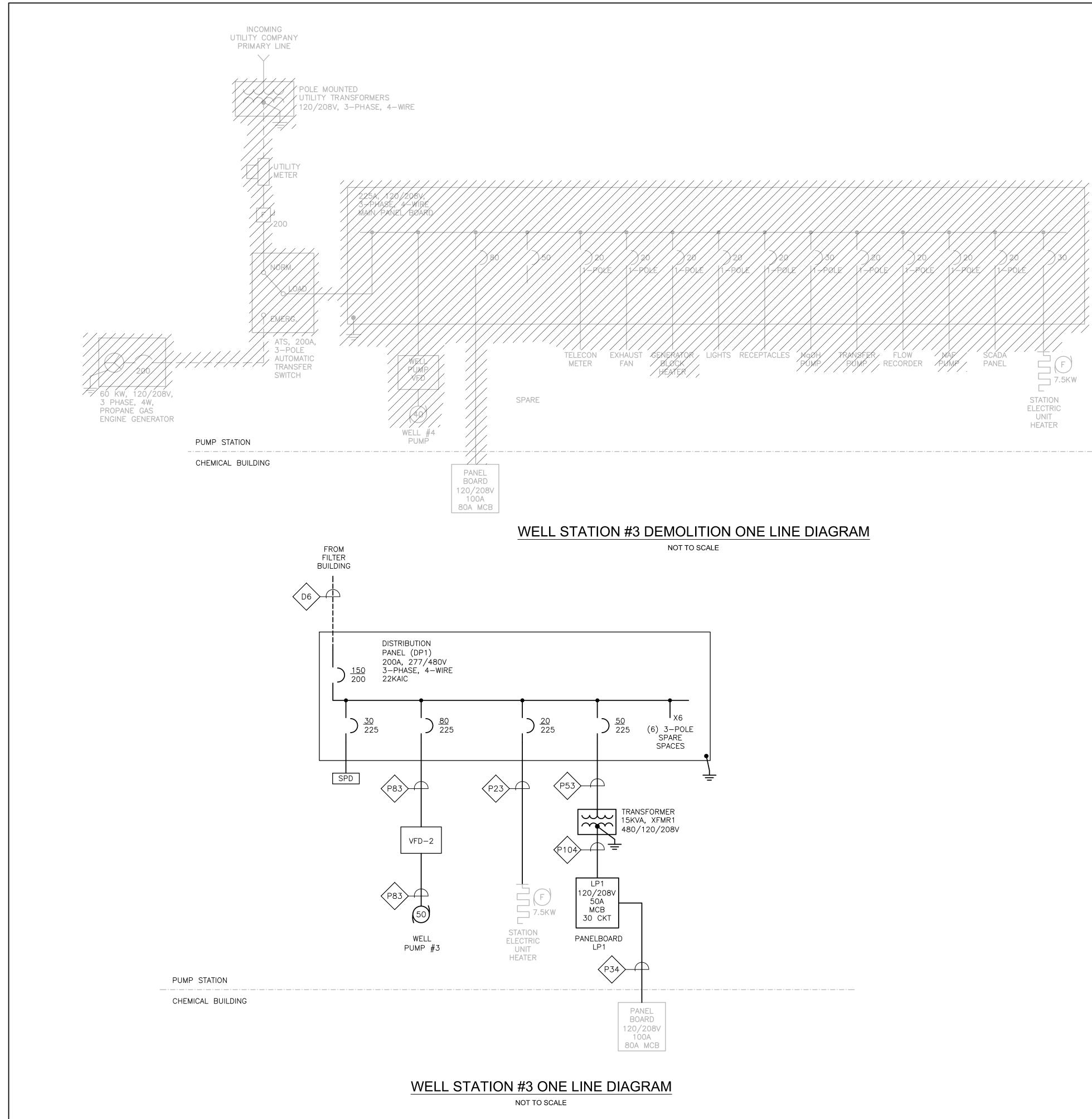
N OR MOISTURE SENSOR

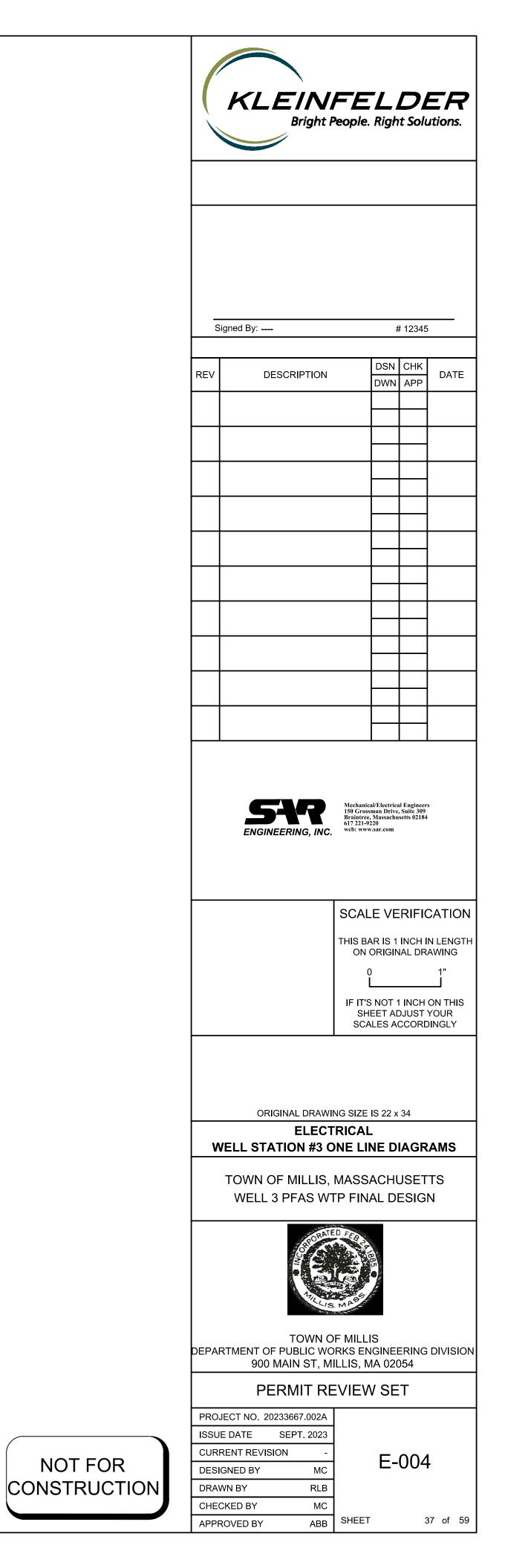

O SCALE IAL EQUIOPMENT MANUFACTURE SUPPLIED

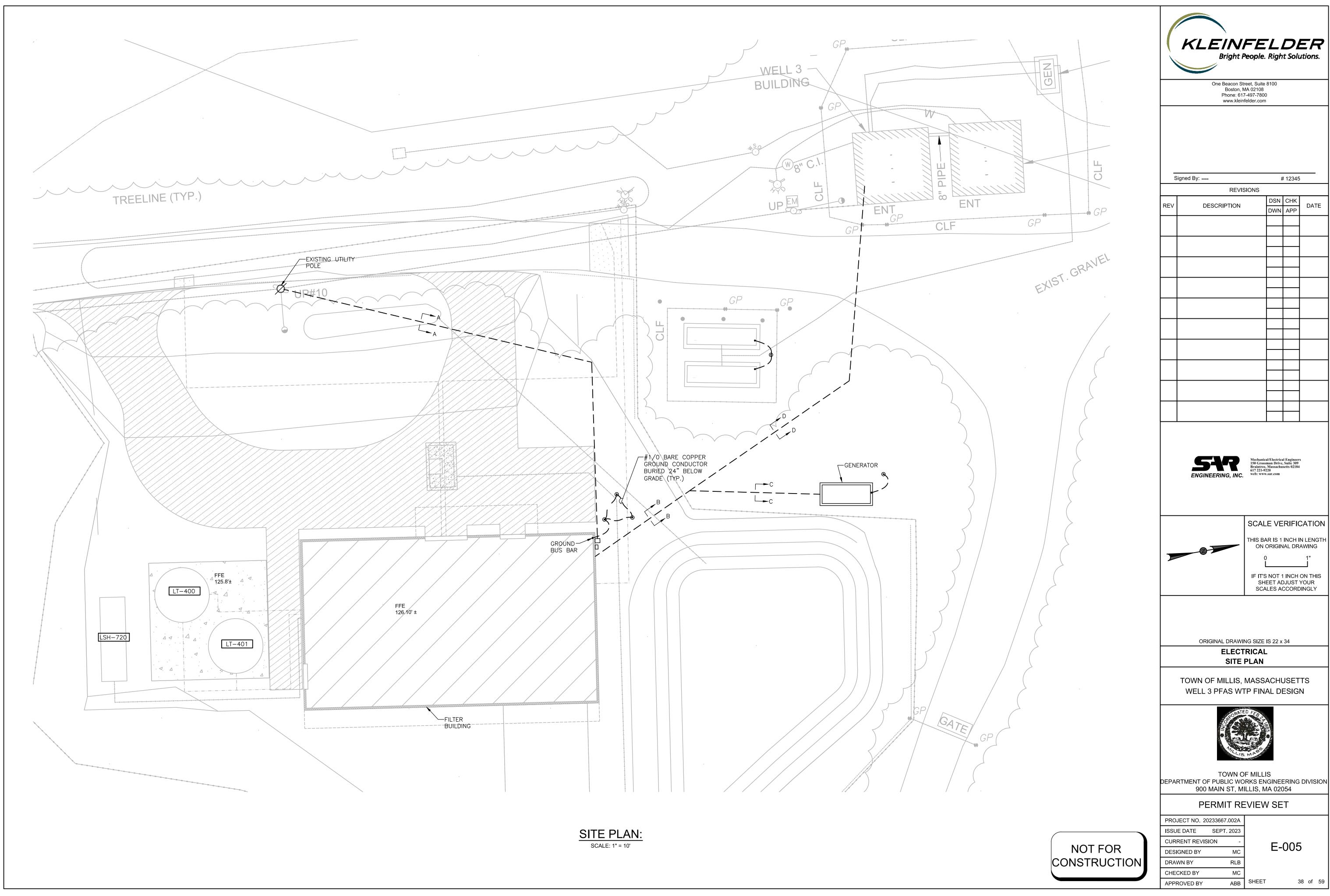
R OVERLOAD HEATER


BUTTON CONTROL STATION MOMENTARY ACT TYPE, STOP START


PUSHBUTTON CONTROL STATION MAINTAINED EMERGENCY STOP TYPE, TWIST TO RELEASE PUSHBUTTON CONTROL STATION MOMENTARY TYPE WITH LOCK-OUT DEVICE, STOP-START PUSHBUTTON CONTROL STATION MAINTAINED CONTACT TYPE, STOP START

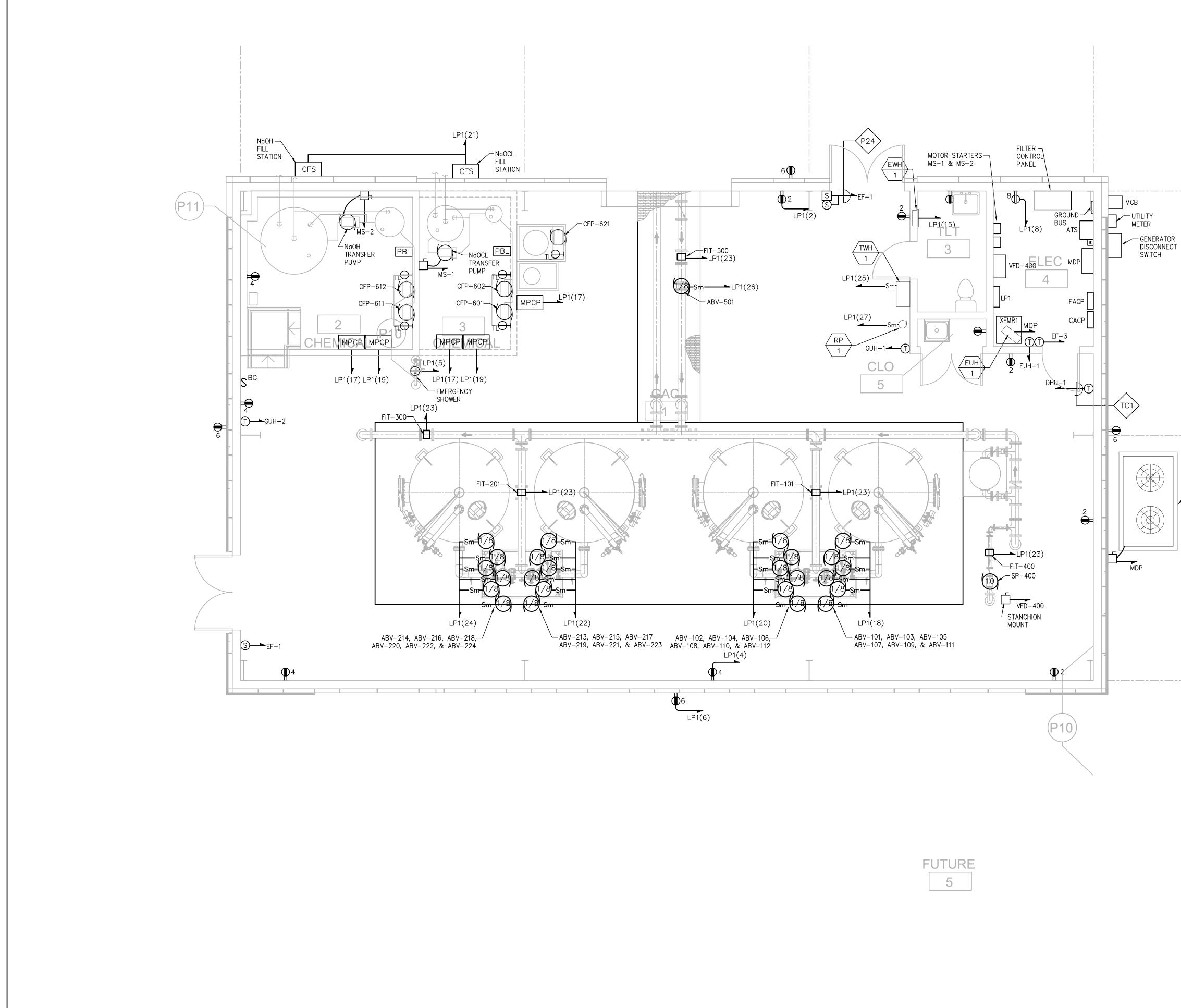

PRESSURE INDICATOR TRANSMITTER PUSHBUTTON CONTROL STATION MOMENTARY TYPE WITH LOCK-OUT DEVICE, STOP




NOT FOR
CONSTRUCTION

12345

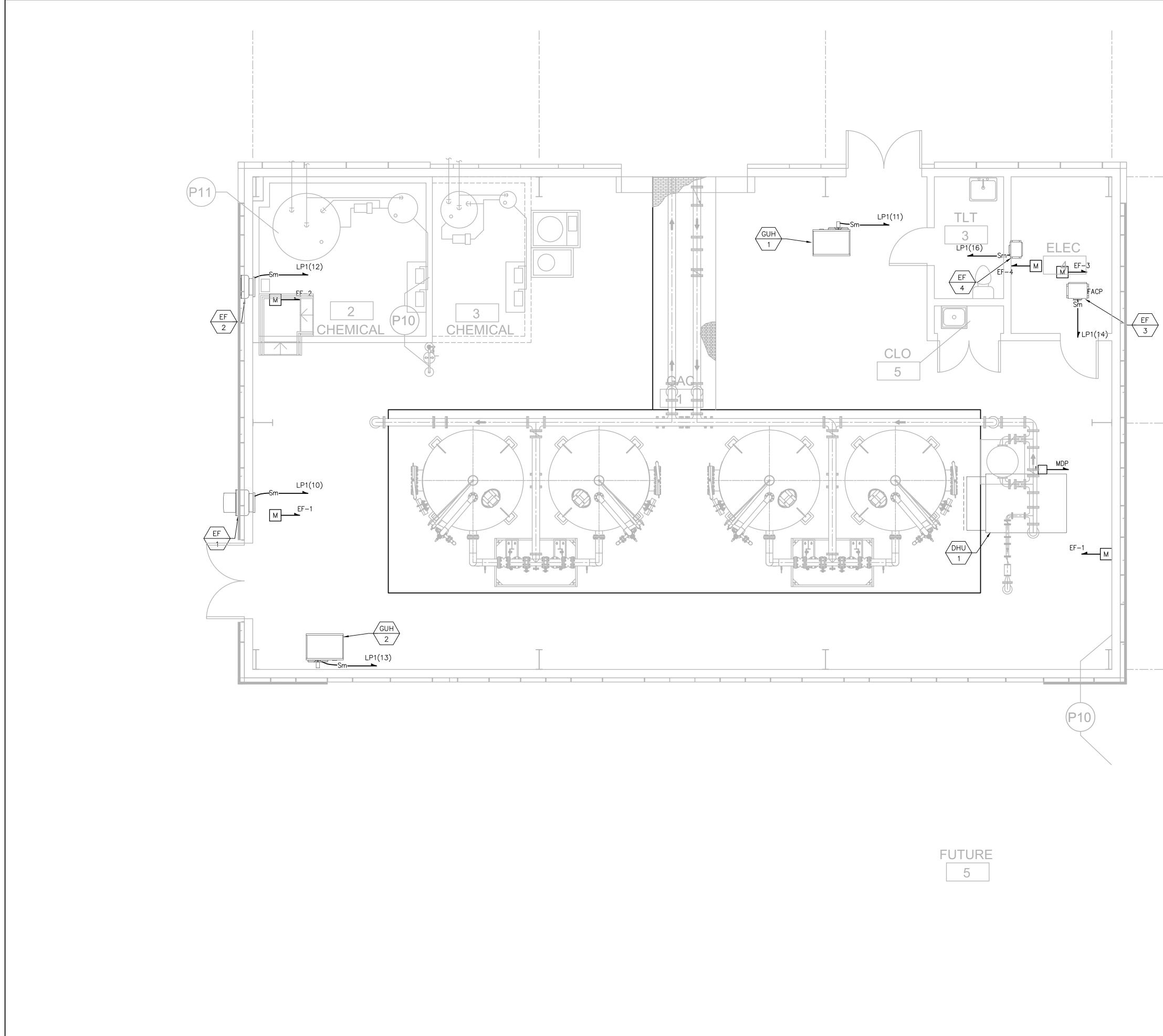
DATE

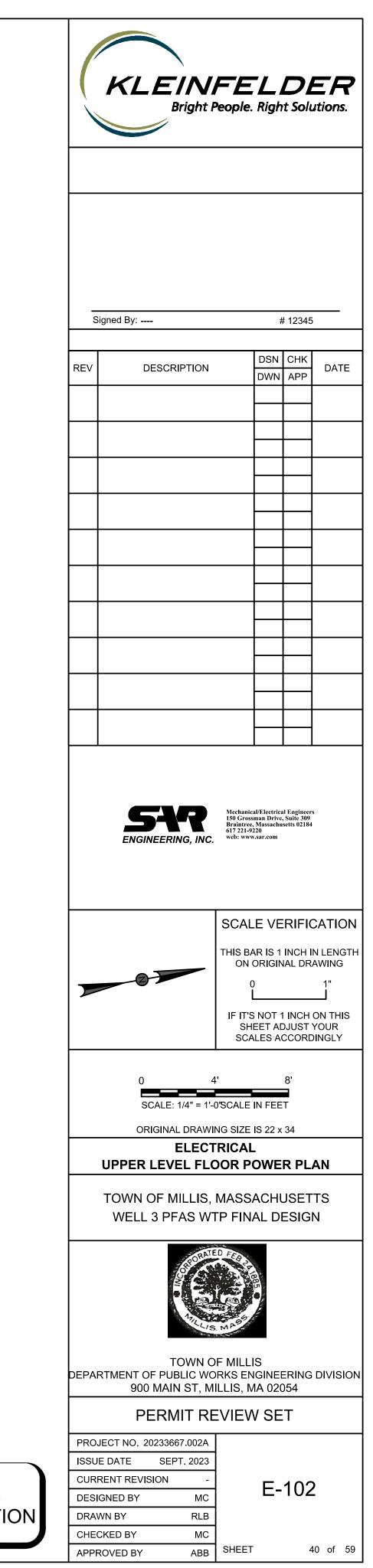

SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

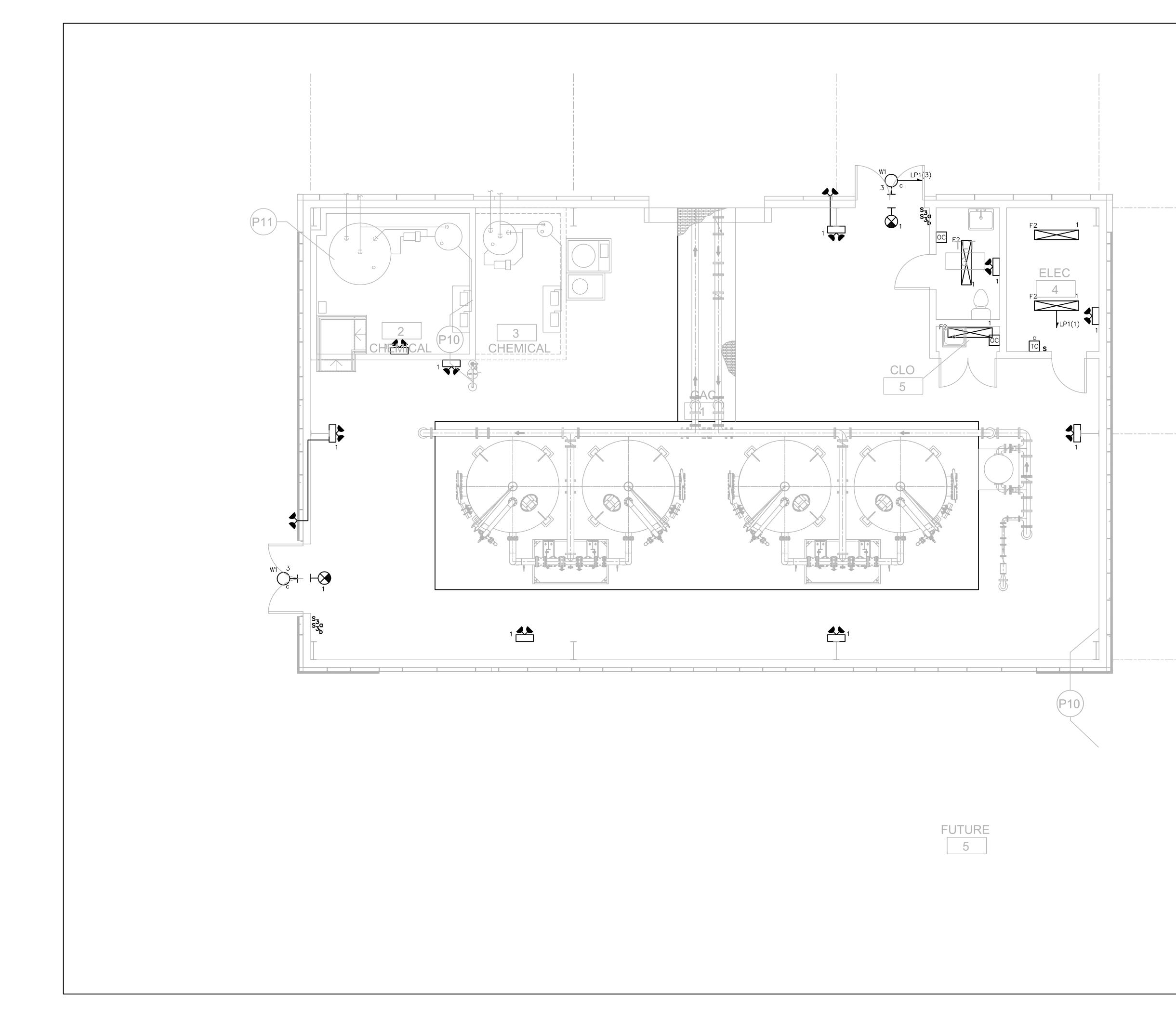
ORIGINAL DRAWING SIZE IS 22 x 34

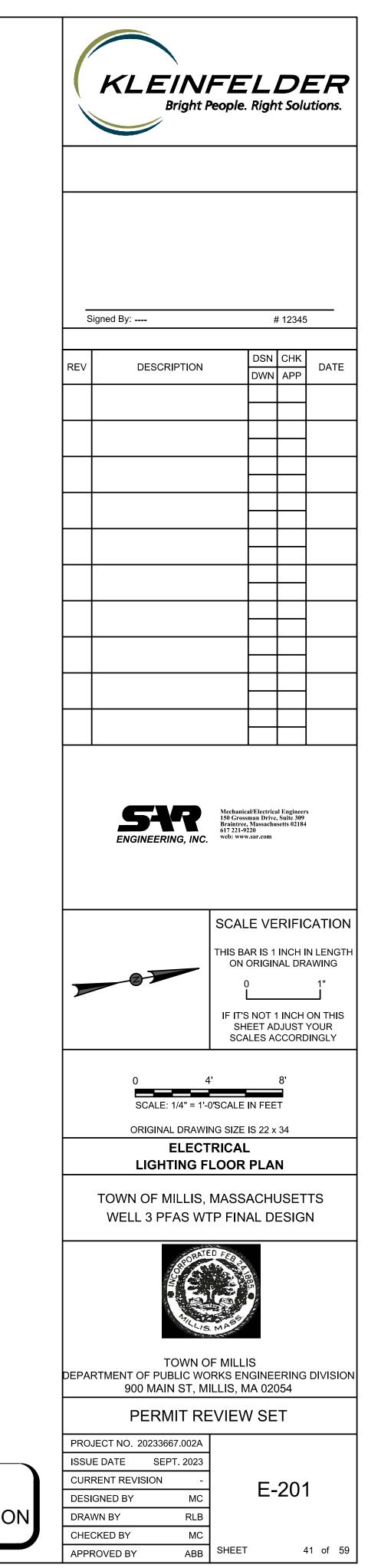
TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

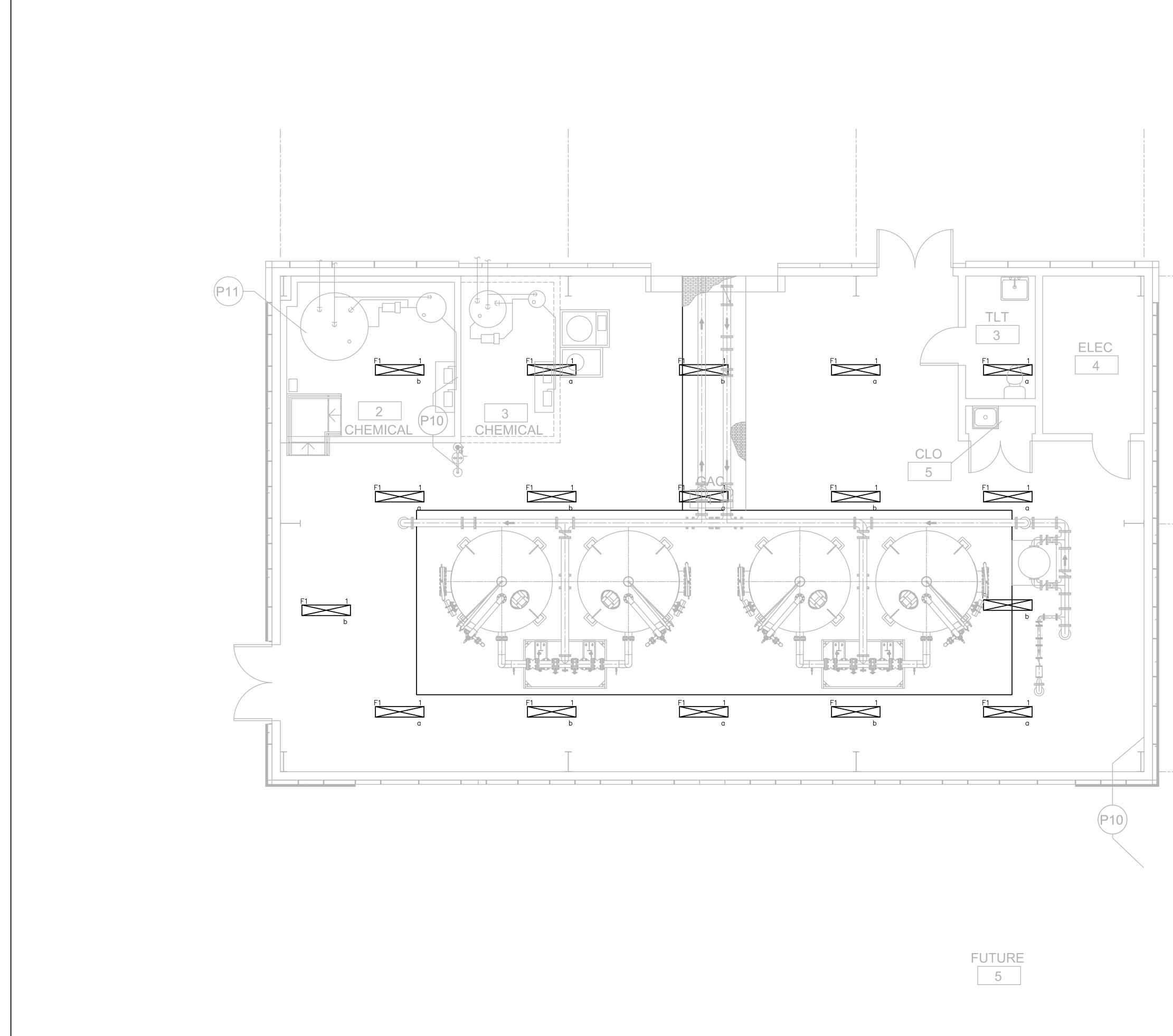
TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


PERMIT REVIEW SET									
PROJECT NO. 20233	667.002A								
ISSUE DATE SE	EPT. 2023								
CURRENT REVISION	-		E-005						
DESIGNED BY	MC		E-003						
DRAWN BY	RLB								
CHECKED BY	MC								
APPROVED BY	ABB	SHEET	38	of	59				

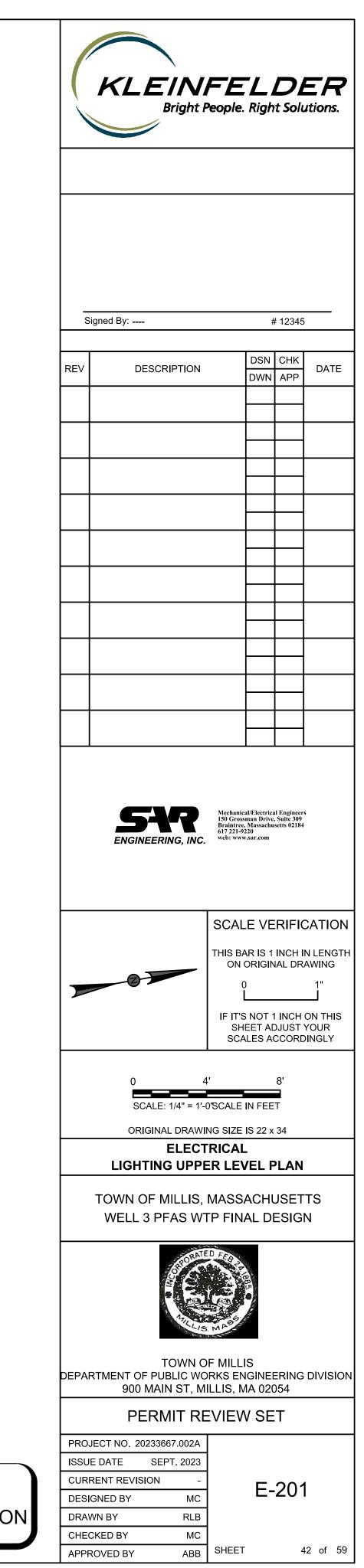

F	UTUR	Ε
	5	

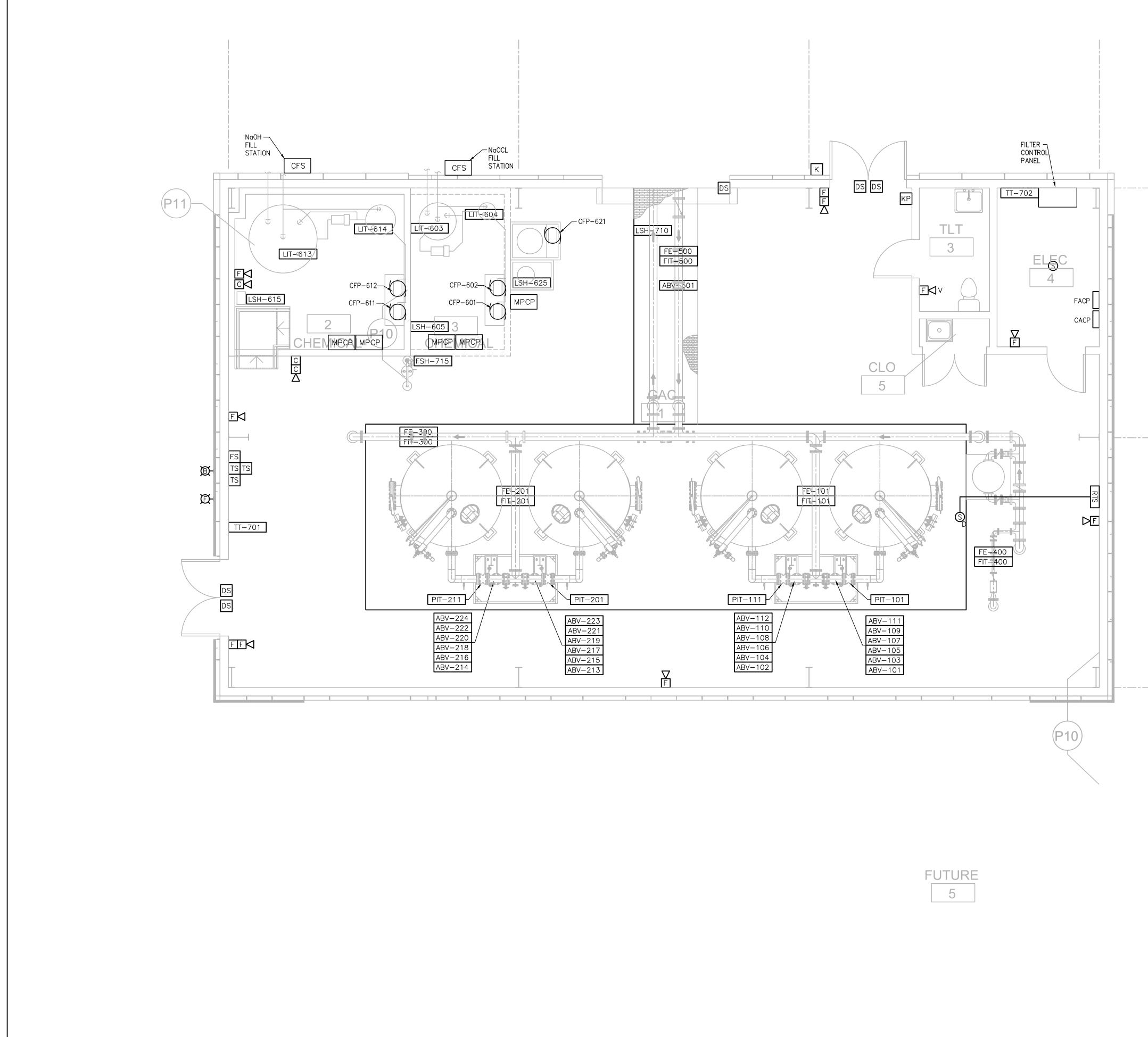

				FEL People. Righ		
	- 5	Signed By:		;	# 12345	
	REV	DESCRIF	PTION	DSN DWN		DATE
		5¥	7	Mechanical/Electric 150 Grossman Drive Braintree, Massachu	e, Suite 309	
		ENGINEERIN		617 221-9220 web: www.sar.com		
				SCALE VE	RIFIC	ATION
				THIS BAR IS 1 ON ORIGIN	INCH II	N LENGTH
		0				
				SHEET AI SCALES A	CCORD	
		0 SCALE: 1	4 /4" = 1'-()'SCALE IN FEE	8' 	
			LECT	NG SIZE IS 22 > RICAL DOR POWE		AN
		TOWN OF MI WELL 3 PF#	LLIS,	MASSACH	USET	тs
			SPORATE	DFER		
			ATTLLIS	MAGO		
	DEPA	RTMENT OF PUBI	LIC WO	F MILLIS RKS ENGINE ILLIS, MA 020		DIVISION
	PRO	PERM		EVIEW SE	T	
	CUR DES	RENT REVISION	- 2023 - MC	E-	-101	
CONSTRUCTION	CHE	WN BY CKED BY ROVED BY	RLB MC ABB	SHEET	3	9 of 59

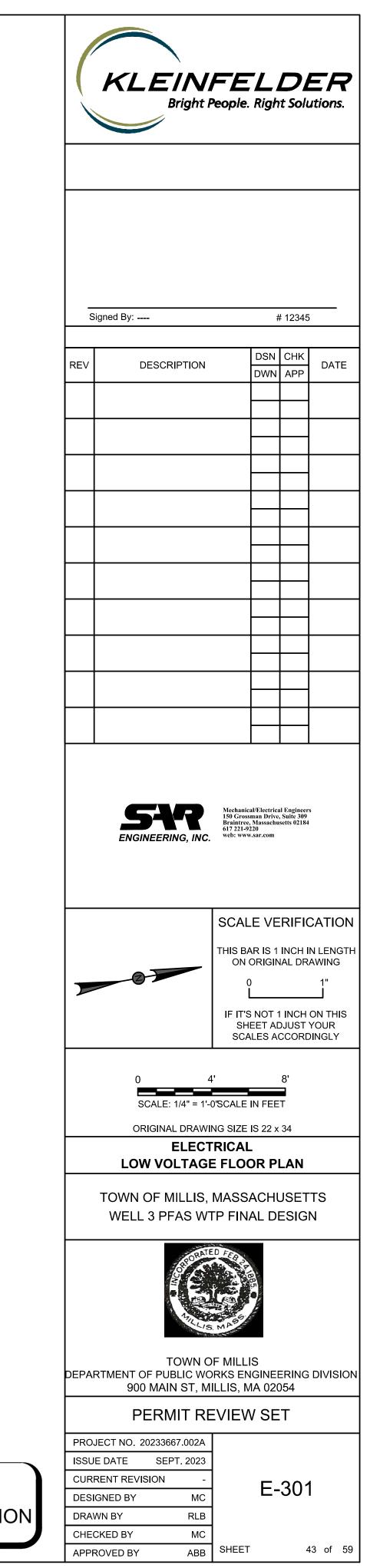

ACC

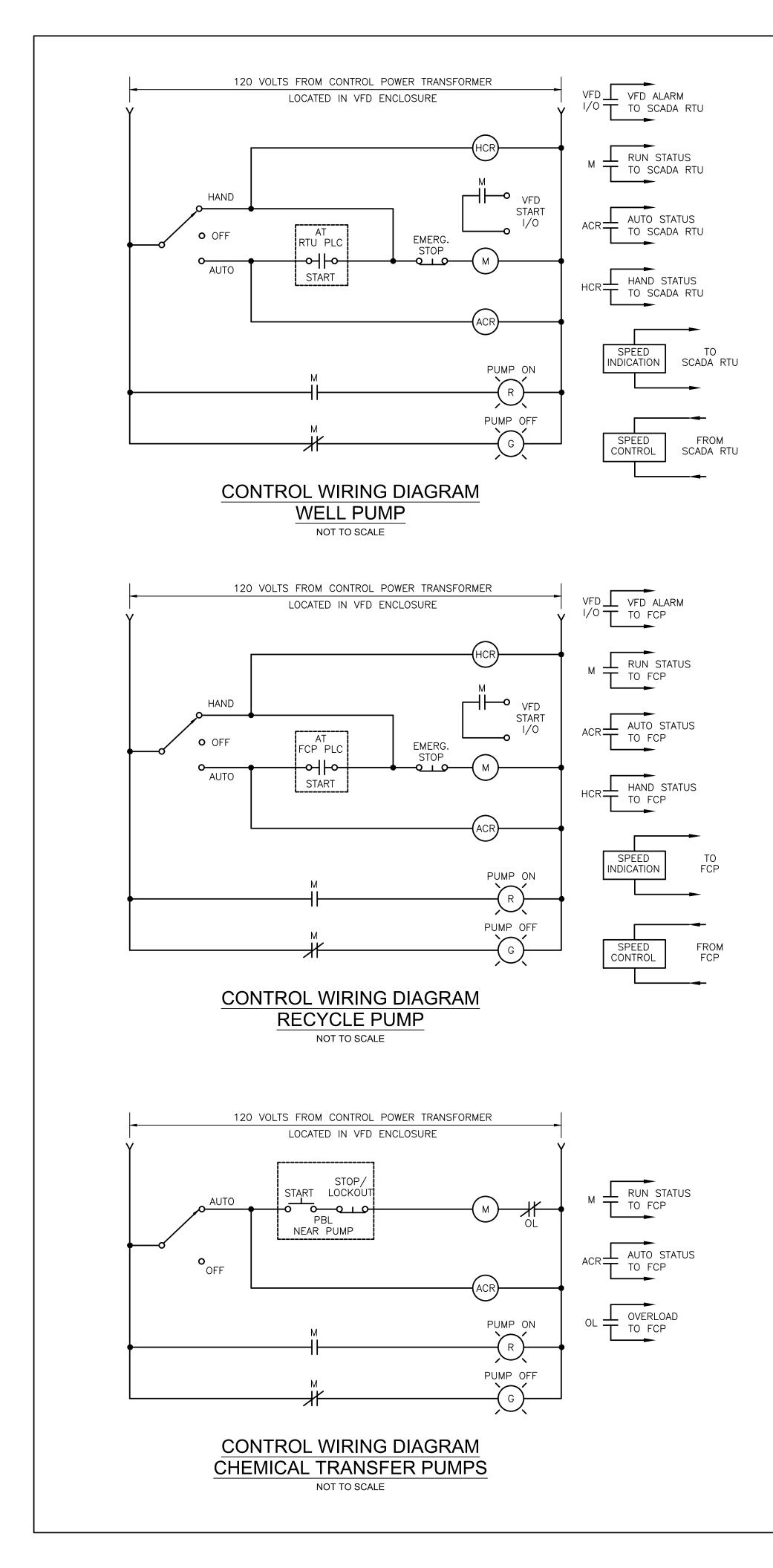


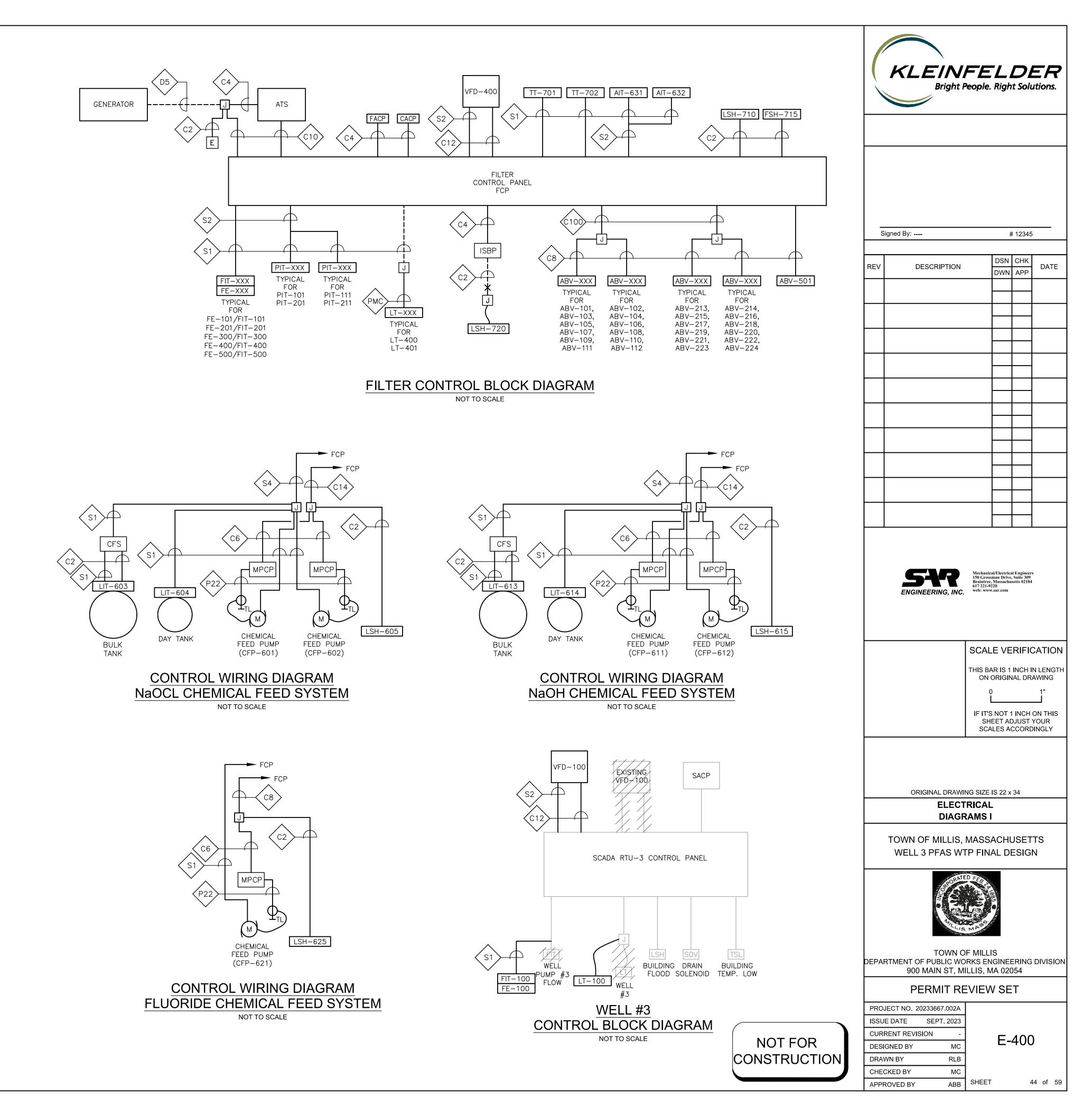
F	UTUR	E
	5	

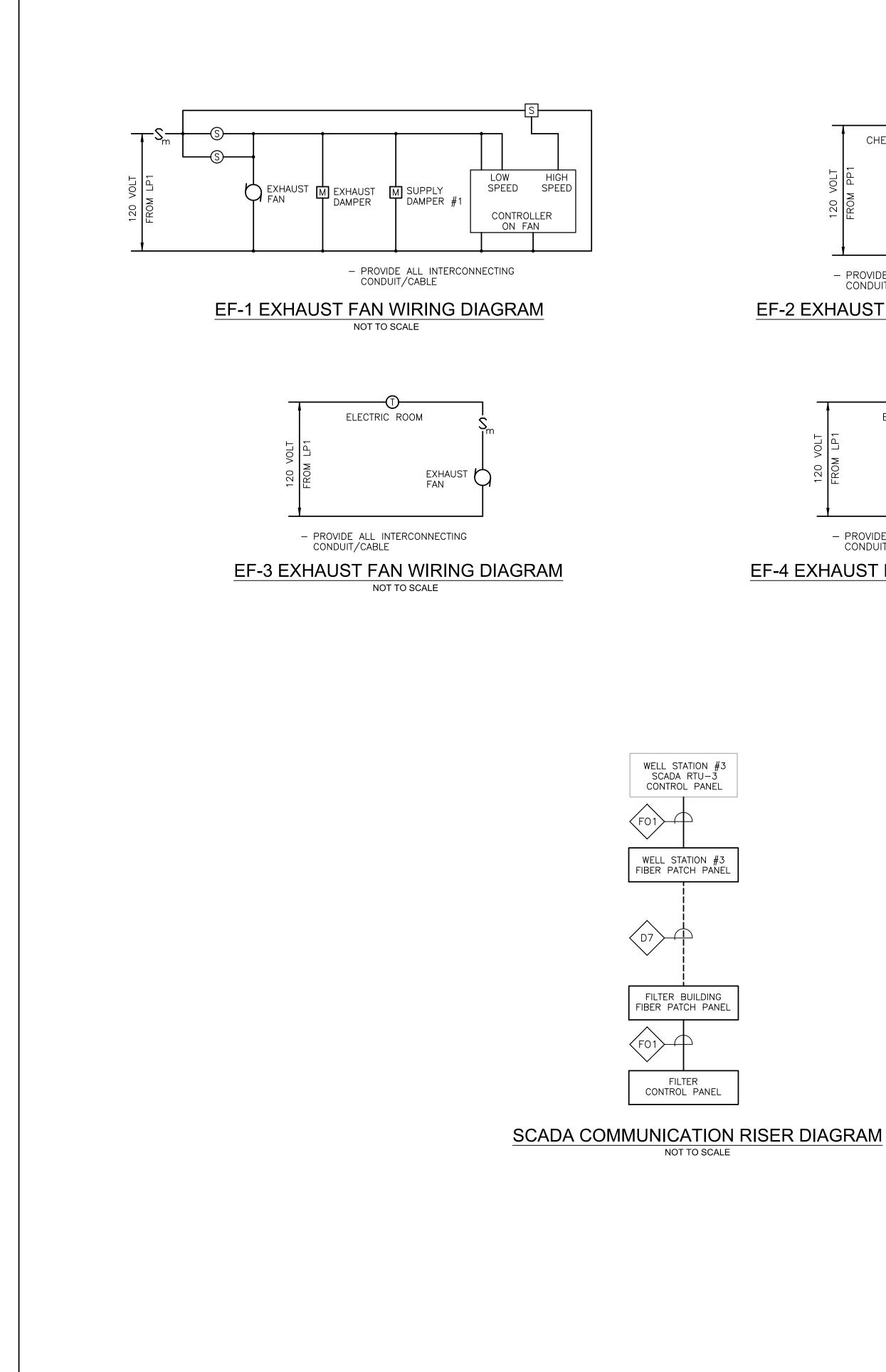


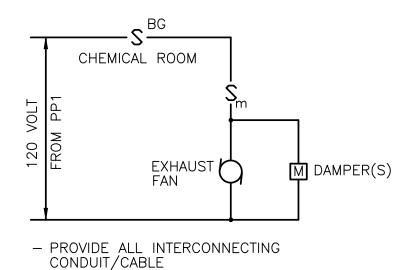


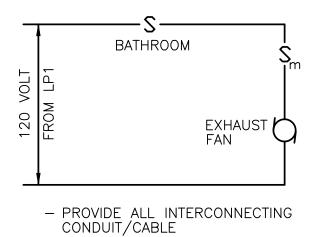


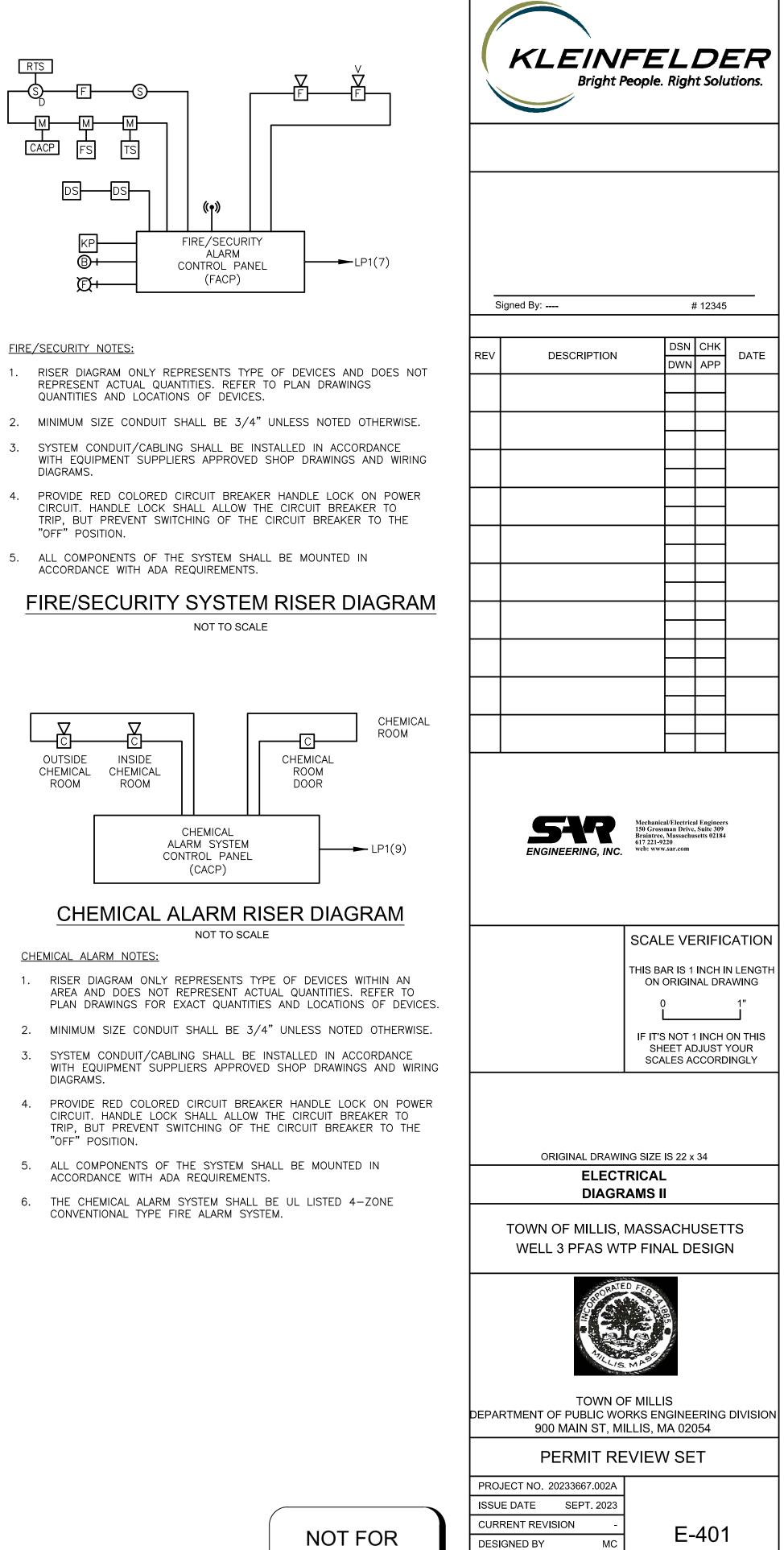

F	UTURE	
	5	

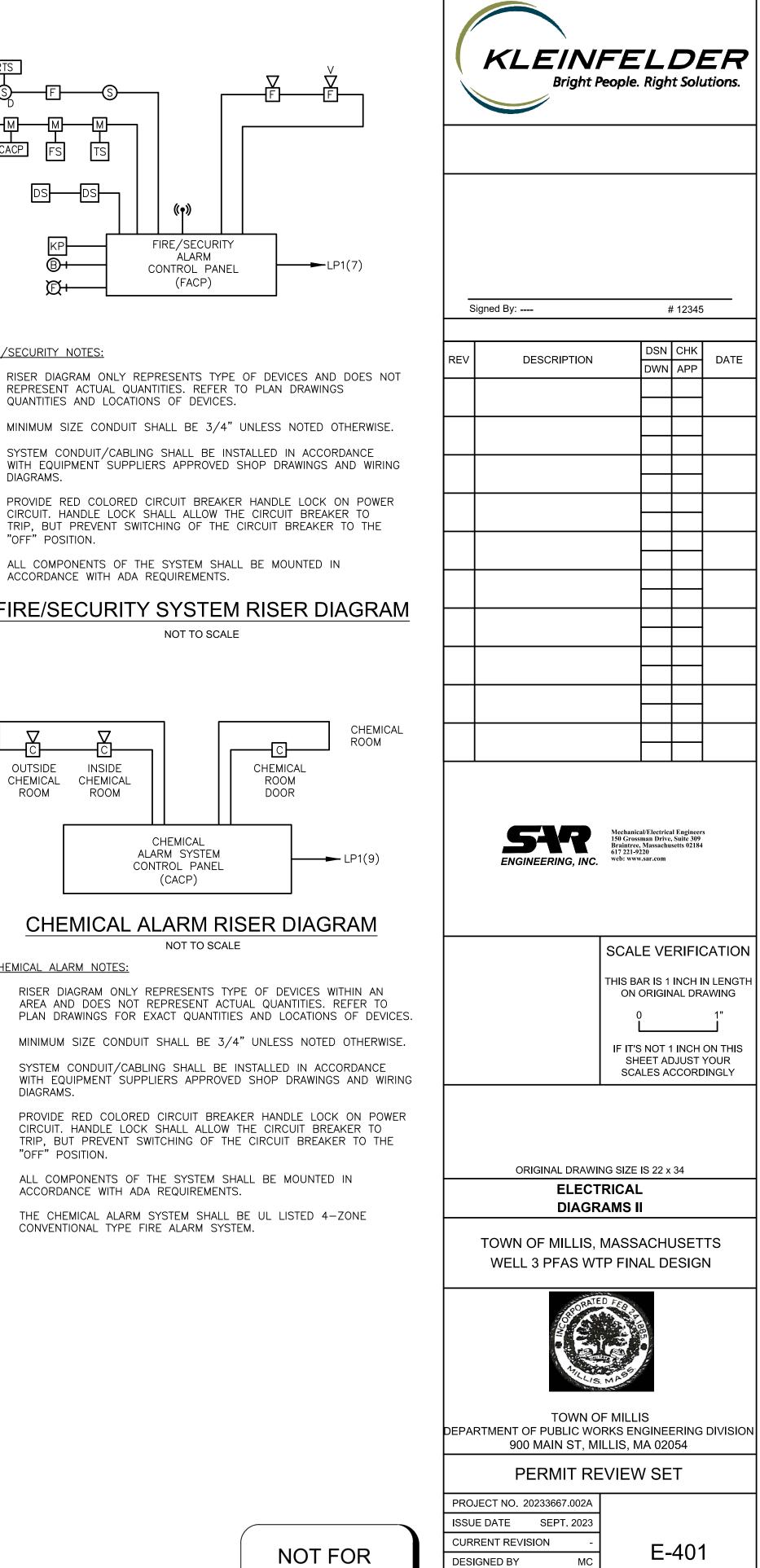





F	UTURE
	5




EF-2 EXHAUST FAN WIRING DIAGRAM


NOT TO SCALE

EF-4 EXHAUST FAN WIRING DIAGRAM

NOT TO SCALE

CONSTRUCTION

DRAWN BY

CHECKED BY

APPROVED BY

RLB

MC

ABB

SHEET

45 of 59

NO. <u>LP1</u>									LO	CATI	ON:011 ELECTRIC ROOM	
<u>208/120_</u> V, <u>3</u> _PH, <u>4</u> _W, <u>-</u> A_MAIN,					100%	SOLID	NEUTRAL;			- /	A MCB	
22,000 AIC AT V FULL GROUN	D BUS					_					MLO <u>SURFACE</u> MOUNTING	
	LOAD	(KVA)	BREAK	(ER		E	REAKER	LOA	D (K	(VA)		
DESCRIPTION OF LOAD	AØ E	sø Cø	TRIP	POLE	1	POLE	TRIP	Aø	Вø	Cø	DESCRIPTION OF LOAD	CIRCUIT
INTERIOR LIGHTING	0.94		20A	1	1∔-∔-	+ 1	20A	1.0			FILTER ROOM RECEPTACLES	
EXTERIOR LIGHTING	0.	10	20A	1	┆┼┿╴	+ 1	20A		0.80		FILTER ROOM RECEPTACLES	4
EMERGENCY SHOWER		0.15	20A	1	1++-	↓ 1	20A			0.80	EXTERIOR RECEPTACLES	6
FIRE ALARM CONTROL PANEL FACP	0.50		20A	1	1♦∔	$\left 1 \right $	20A	0.40			ELECTRIC ROOM RECEPTACLES	8
CHEMICAL ALARM CONTROL PANEL CACP	0.	50	20A	1	┆┼┿╴	$\left \frac{1}{1} \right $	20A		0.77	7	EXHAUST FAN EF-1	1(
GAS UNIT HEATER GUH-1		1.10	20A	1	1++-	↓ 1	20A			0.20	EXHAUST FAN EF-2	12
GAS UNIT HEATER GUH-2	1.10		20A	1	1♦∔	$\left 1 \right $	20A	0.77	7		EXHAUST FAN EF-3	14
ELECTRIC WALL HEATER EWH-1	1.	50	20A	1	1++	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	20A		0.10		EXHAUST FAN EF-4	16
7 CFP-601, CFP-611, CFP-621		0.75	20A	1	1++-		20A			0.72	GAC UNIT 101 VALVES	18
CFP-602, CFP-612, CFP-622	0.75		20A	1	1♦+	+ 1	20A	0.72	2		GAC UNIT 111 VALVES	2
1 CHEMICAL FILL STATIONS	0.	20	20A	1	1┼┿-	+ 1	20A		0.72	2	GAC UNIT 201 VALVES	2
3 FLOW METERS		1.00	20A	1	1++-	♦ 1	20A			0.72	GAC UNIT 211 VALVES	2
5 GAS WATER HEATER TWH-1	0.50		20A	1	1♦+	+ 1	20A	0.12	2		ABV-501	2
RECIRC. PUMP RP-1	0.	10	20A	1	1++	+ 1	_		-		_	2
) _		-	-	1	1++-		_			-	_	3
1 –	-		_	1	1♦∔	+ 1	_				_	3
3 –		-	-	1	1┼┿-	+ 1	_		-		_	3.
5 –		-	-	1	1++-		_			-	_	3
7 _	-		-	1	1♦+-	+ 1	_	-			_	3
) _		-	-	1	1┼┿-	+ 1	20A		0.50		GENERATOR BATTERY CHARGER & STATOR HEAT.	. 4
1 —		-	_	1	1++	♦ 1	20A			1.50	GENERATOR BLOCK HEATER	4
JB-TOTAL CONNECTED					1			_	-	-	SUB-TOTAL CONNECTED	
				SUB-T								

		L	IGHT	NG FIXT	URE S	CHED	ULE				
TYPE	DESCRIPTION	MANUFACTURER &		LAMPS				VOLTS WATTS		NTING	REMARKS
	DESCINITION	CATALOG SERIES	TYPE	LUMENS	VOLIS	WAIIS	TYPE	HEIGHT			
F1	48" LED ENCLOSED AND GASKETED INDUSTRIAL LIGHTING FIXTURE.	LITHONIA FEM-L48-6000LM-IMAFL- MVOLT-35K-80CRI	LED 3500K	6000lm	120	45	PENDANT	20'—0"ABOVE FINISHED FLOOR UNLESS OTHERWISE NOTED			
F2	48" LED ENCLOSED AND GASKETED INDUSTRIAL LIGHTING FIXTURE.	LITHONIA FEM-L48-4000LM-IMAFL- MVOLT-35K-80CRI	LED 3500K	4000lm	120	31	SURFACE				
W1	EXTERIOR BUILDING MOUNTED LED WALL PACK LIGHT FIXTURE	LITHONIA TWP-LED-20C-700-50K- T3M-120-PE-DDXB	LED 5000K	4200lm	120	45	WALL	APPROXIMIATELY 9'-0" AFF	INTEGRAL PHOTOCELLL CONTROLLED		
	SELF CONTAINED EMERGENCY LIGHTING BATTERY UNIT NEMA 4 WITH TWO LIGHTING HEADS	REFER TO SPECIFICATIONS			120	8W	WALL	APPROXIMIATELY 8'-6" AFF	INSTALL 3/4"C, 2#12, 1#12GND TO REMOTE HEADS		
	SEALED-BEAM WEATHERPROOF REMOTE LIGHTING FIXTURE WITH TWO LIGHTING HEADS	REFER TO SPECIFICATIONS			120	8W	WALL	APPROXIMIATELY 8'-6" AFF			
	EMERGENCY EXIT SIGN LED TYPE WITH BATTERY BACK-UP NEMA 4X	REFER TO SPECIFICATIONS			120		WALL	APPROXIMIATELY 8'-6" AFF			

LIGHTING FIXTURE SCHEDULES NOTES:

THE CATALOG NUMBERS LISTED ARE GIVEN AS A GUIDE TO THE DESIGN AND QUALITY OF FIXTURE DESIRED. EQUIVALENT DESIGNS, MATERIALS, DIMENSIONS, COEFFICIENT OF UTILIZATIONS AND EQUAL QUALITY FIXTURES OF OTHER MANUFACTURERS WILL BE ACCEPTABLE. 1.

	POWER CAE	BLE/CONDUI	SCHEDULE	
BOL	CONDUIT SIZE	CONDUCTORS'	GND*	
22	3/4"	(2)#12	(1)#12	-
24	3/4"	(4)#12	(1)#12	\square
26 32	<u> </u>	<u>(6)#12</u> (2)#10	<u>(1)#12</u> (1)#10	
33	3/4"	(3)#10	(1)#10	
53	3/4"	(3)#8	(1)#10	
54 53	3/4"	<u>(4)#8</u> (3)#6	<u>(1)</u> #10 (1)#8	_
54	1"	(4)#6	(1)#8	-
33	1 1/4"	(3)#4	(1)#8	
34 103	<u>1 1/4"</u> 1 1/2"	<u>(4)</u> #4 (3)#3	<u>(1)#8</u> (1)#6	
103	1 1/2"	(4)#3	(1)#6	-
113	1 1/2"	(3)#2	(1)#6	
114 133	<u> </u>	<u>(4)#2</u> (3)#1	<u>(1)#6</u> (1)#6	
134	<u> </u>	(4)#1	(1)#6	
153	2"	(3)#1/0	(1)#6	コ
154 173	2"	(4)#1/0	(1)#6	
173	<u>2 1/2"</u> 2 1/2"	(3)#2/0 (4)#2/0	<u>(1)#6</u> (1)#6	
203	2 1/2"	(3)#3/0	(1)#4	
204	2 1/2"	(4)#3/0	(1)#4	
233	<u>3"</u> 3"	(3)#4/0	(1)#4	
234 253	<u> </u>	(4)#4/0 (3)250KCMIL	<u>(1)#4</u> (1)#4	
<u>254</u> 304	3" 3"	(4)250KCMIL	(1)#4	
		(4)350KCMIL	(1)#4	
			IT SCHEDULE	_
BOL	CONDUIT SIZ	ZE	CABLES	I I
)1	1"		1-CAT6	_
)1	1"		-STRAND FIBER OPTIC CABLE	
BOL	1" SIGNAL CABI CONDU	E/CONDUI	T SCHEDULE CONDUCTORS	
BOL	1" SIGNAL CABI CONDU	E/CONDUI	TSCHEDULE CONDUCTORS VENDER PROVIDED	
BOL	1" SIGNAL CABI CONDU 1 3/	E/CONDUI	S-STRAND FIBER OPTIC CABLE TSCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP	
BOL 1 2	1" SIGNAL CABI CONDU	_E/CONDUI IIT SIZE " (4" (4" (4"	TSCHEDULE CONDUCTORS VENDER PROVIDED	
BOL 1 3 3	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 3/	E/CONDUI IIT SIZE " (4" (4" (4"	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP	
1 3 3 3 5	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1	E/CONDUI IIT SIZE " (4" (4" (4"	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP	
BOL 1 2	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1	_E/CONDUI IIT SIZE " (4" (4" (4" (4" (4" " "	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP	
3 OL 3 OL 5 5	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1	_E/CONDUI ⁻ IIT SIZE " (4" (4" (4" (4" " "	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP	
BOL 1 3 3 3 3 4 5 5	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1	_E/CONDUI ⁻ IIT SIZE " (4" (4" (4" (4" (4" 	S-STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP	
1 3 3 3 3	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1	_E/CONDUIT	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 1-2/C#16 TSP	
BOL BOL 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI IIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (4	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP	
	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUIT	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP	
D1 BOL 1 3 2 3 3 3 3 4 5 5 5 5 5 5 5 7 3 3 4 5 5 5 5 5 7 3 9 0 2 1	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUIT	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP	
D1 BOL 1 3 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI IIT SIZE " (4" (4" (4" (4" (4" (4" (4"	S-STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/C#18	
D1 BOL 1 3 2 3 3 3 3 4 5 5 5 5 5 5 5 7 3 3 4 5 5 5 5 5 7 3 9 0 2 1	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/	_E/CONDUI	S-STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/C#18	
DI BOL BOL 1 3 2 3 3 3 4 5 5 5 5 5 5 5 5 7 3 3 4 5 5 5 5 7 3 9 0 21 1 1 1 1 3 3 3 4 5 5 5 5 7 3 9 9 0 2 1 1 1 1 3 3 1 3 4 5 5 5 5 7 7 8 9 9 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	S-STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/C#18	
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18	
BOL BOL 1 3 2 3 3 3 4 5 5 7 3 9 0 1 1 2 4 5 5 7 8 0 1 1 2 1 5 5 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1" SIGNAL CABI CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/C#18	
1 30L 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18	
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/C#18	
1 3 3 3 3 3 3 3 3 3 3 3 3 3	1" SIGNAL CABI CONDU 1 CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 10-2/C#16 TSP 8/14 9#14 10#14	
BOL BOL 1 3 2 3 3 3 4 5 5 7 3 3 4 5 7 3 3 4 5 7 7 3 3 4 5 7 7 3 3 4 5 7 7 3 3 4 5 7 7 7 3 3 4 5 7 7 7 3 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	E/CONDUI IT SIZE	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18	
	1" SIGNAL CABI CONDU 1 CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18	
	1" SIGNAL CABI CONDU 1 1 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18	
	1" SIGNAL CABI CONDU 1 1 1 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	_E/CONDUI	S-STRAND FIBER OPTIC CABLE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#18 TSCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14 16#14 20#14	

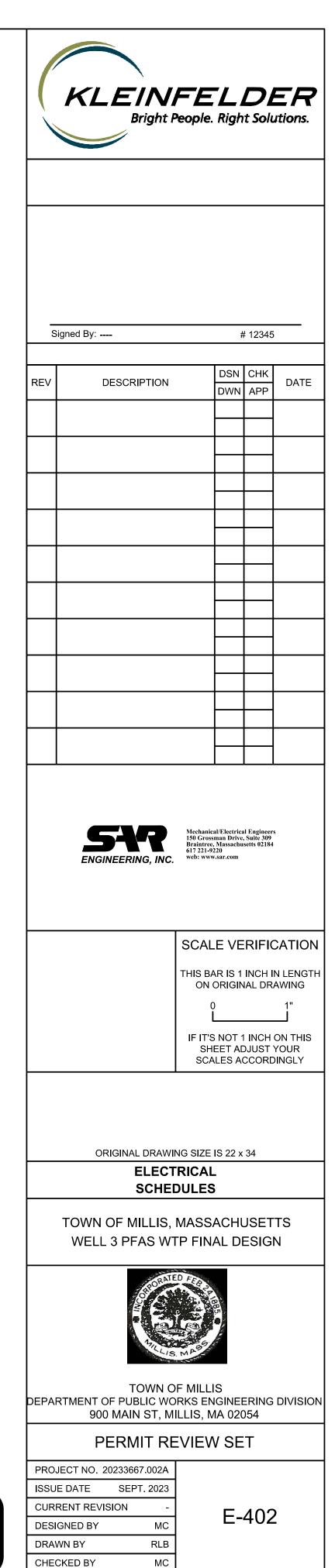
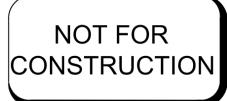
	POWER CAE	BLE/CONDUIT S	SCHEDULE
MBOL	CONDUIT SIZE	CONDUCTORS*	GND*
P22	3/4"	(2)#12	(1)#12
P24	3/4"	(4)#12	(1)#12
P26	3/4"	(6)#12	(1)#12
P32 P33	<u>3/4"</u> 3/4"	(2)#10 (3)#10	(1)#10 (1)#10
P53	3/4"	(3)#8	(1)#10
P54	3/4"	(4)#8	(1)#10
P63	1"	(3)#6	(1)#8
P64 P83	1 1/4"	(4)#6 (3)#4	<u>(1)#8</u> (1)#8
P84	1 1/4"	(4)#4	(1)#8
P103	1 1/2"	(3)#3	(1)#6
P104 P113	<u>1 1/2"</u> 1 1/2"	(4)#3 (3)#2	<u>(1)#6</u> (1)#6
P114	1 1/2"	(4)#2	(1)#6
P133	2"	(3)#1	(1)#6
P134	2"	(4)#1	(1)#6
P153 P154	<u>2"</u> 2"	(3)#1/0 (4)#1/0	<u>(1)#6</u> (1)#6
P173	2 1/2"	(3)#2/0	(1)#6
P174	2 1/2"	(4)#2/0	(1)#6
P203	<u>2 1/2"</u> 2 1/2"	(3)#3/0	(1)#4
P204 P233	<u>2 1/2"</u> 3"	(4)#3/0 (3)#4/0	<u>(1)#4</u> (1)#4
P234	3"	(4)#4/0	(1)#4
P253	3"	(3)250KCMIL	(1)#4
P254 P304	<u> </u>	(4)250KCMIL (4)350KCMIL	<u>(1)#4</u> (1)#4
	LE/DATA CAI	BLE/CONDUIT	SCHEDULE
MBOL	CONDUIT SI	ZE	CABLES
rd1	1"		1-CAT6
-01	1"	6-ST	RAND FIBER OPTIC CABLE
(
`	SIGNAL CAB	LE/CONDUIT S	CHEDULE
		L E/CONDUIT S	CONDUCTORS
/BOL s	CONDU	JIT SIZE "	
MBOL S	CONDU 1 3/	JIT SIZE " (4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP
MBOL S S1 S13	CONDU 1 3/ 3/	JIT SIZE " (4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP
/BOL s s1 s13	CONDU 1 3/ 3/ 3/ 3/	JIT SIZE " (4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP
MBOL S S1 S13 S2 S2 S3	CONDU 1 3/ 3/ 3/ 3/ 3/ 1	JIT SIZE " (4" (4" (4" (4" (4" "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP
MBOL S S1 S13 S2 S23 S3 S33	CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4")))))))))))))))))))	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP
MBOL S S1 S13 S2 S23 S3 S33	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1	JIT SIZE " (4" (4" (4" (4" (4" "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP
ABOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S5 S6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP
MBOL S S1 S13 S2 S33 S33 S4 S5 S6 S7	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $7-2/C\#16$ TSP
MBOL S S1 S13 S2 S23 S3 S3 S3 S3 S4 S5 S5 S6 S7 S8	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" (4" (4")))))))))))))))))))	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP
ABOL S S1 S1 S2 S2 S3 S3 S3 S4 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORSVENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP
VBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $10-2/C\#16$ TSP $8/C\#18$
MBOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 CC	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $10-2/C\#16$ TSP $8/C\#18$
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 CC MBOL	CONDU 1 3/ 3/ 3/ 3/ 1/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#18
ABOL S S1 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 ABOL	CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C1 CC MBOL C2 C4 C5	CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#18
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C1 CC MBOL C2 C4 C2 C4 C5 C6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ SCHEDULE CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$
MBOL S S1 S13 S2 S23 S3 S3 S4 S5 S6 S7 S8 S9 S10 IC1 C1 CC MBOL C2 C4 C5 C6 C7	CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#18
MBOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UT SIZE " (4" (4" (4" (4" (4" (4" (4") (4") (4") (4") (2" (2" (2" (2" (2" (2" (2" (4")) (4") (CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ SCHEDULE CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$
MBOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" " " " " /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /4" 4" 4" 4" 4" 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ SCHEDULE CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$ $10\#14$
MBOL S S1 S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C1 C1 C1 C1 C2 C4 C2 C4 C5 C6 C7 C6 C7 C8 C9 C12 C1 C1 C1 C1 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " '4" '4" '4" '4" '2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$
MBOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C1 C1 C1 C1 C1 C2 C4 C5 C6 C7 C6 C7 C6 C7 C6 C7 C8 C9 C12 C16 C20 C16 C10 C17 C17 C17 C17 C17 C17 C17 C17	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" " " " " /2" /2" /2" /2" /2" /2" /2" /2" /4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ SCHEDULE CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$ $10\#14$
VIBOL S S1 S1 S2 S2 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C1 C1 C1 C2 C4 C2 C4 C5 C6 C7 C6 C7 C6 C7 C6 C7 C8 C9 C12 C16 C20 C12 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C20 C16 C10 C12 C16 C20 C16 C20 C16 C10 C12 C16 C20 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C16 C10 C12 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	CONDU 1 3/ 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " (4" (4" (4" (4" " " " " " " " " " " " " /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /4" 4"	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/L\#16$ TSP $8/L\#14$ $9\#14$ $9\#14$ $9\#14$ $9\#14$ $10\#14$ $12\#$
MBOL S S1 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 CC MBOL C2 C4 C5 C6 C7 C8 C9 C16	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	JIT SIZE " '4" '4" '4" '2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2" /4" 4"	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ SCHEDULE CONDUCTORS August A to the set of t

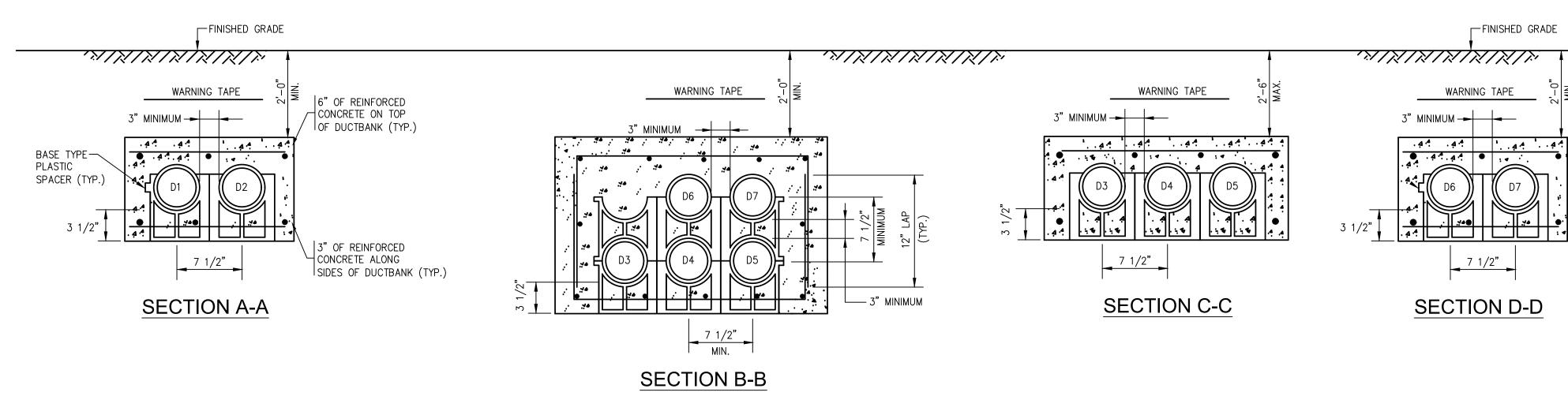
	POWER CAE	BLE/CONDUIT	SCHEDULE
IBOL	CONDUIT SIZE	CONDUCTORS*	GND*
P22	3/4"	(2)#12	(1)#12
P24	3/4"	(4)#12	(1)#12
26 32	<u> </u>	(6)#12	(1)#12
33	3/4"	(2)#10 (3)#10	<u>(1)</u> #10 (1)#10
53	3/4"	(3)#8	(1)#10
'54	3/4"	(4)#8	(1)#10
P63	1" 1"	(3)#6	(1)#8
P64 P83	1 1/4"	<u>(4)#6</u> (3)#4	<u>(1)#8</u> (1)#8
P84	1 1/4"	(4)#4	(1)#8
P103	1 1/2"	(3)#3	(1)#6
P104 P113	<u>1 1/2"</u> 1 1/2"	(4)#3 (3)#2	<u>(1)#6</u> (1)#6
p114	1 1/2"	(4)#2	(1)#6
P133	2"	(3)#1	(1)#6
p134	2"	(4)#1	(1)#6
153 154	<u>2"</u> 2"	(3)#1/0 (4)#1/0	<u>(1)#6</u> (1)#6
173	2 1/2"	(3)#2/0	(1)#6
P174	2 1/2"	(4)#2/0	(1)#6
P203	2 1/2"	(3)#3/0	(1)#4
204 233	<u>2 1/2"</u> 3"	(4)#3/0	(1)#4
P233 P234	<u> </u>	(3)#4/0 (4)#4/0	<u>(1)</u> #4 (1)#4
P253	3"	(3)250KCMIL	(1)#4
254	3"	(4)250KCMIL	(1)#4
304	3"	(4)350KCMIL	(1)#4
TE	LE/DATA CAE	BLE/CONDU	IT SCHEDULE
BOL	CONDUIT SIZ		CABLES
		-	
D1 01	1"		1-CAT6 -STRAND FIBER OPTIC CABLE
	SIGNAL CABI	_E/CONDUIT	SCHEDULE
		E/CONDUIT	CONDUCTORS
IBOL	CONDU 1	IT SIZE "	
1BOL S	CONDU 1 3/	IT SIZE " 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP
1BOL S 51 13	CONDU 1 3/ 3/	IT SIZE " 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP
1BOL S S1 13 S2	CONDU 1 3/ 3/ 3/	IT SIZE " 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP
MBOL S S1 S13 S2 S23	CONDU 1 3/ 3/	IT SIZE " 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP
MBOL S S1 613 S2 523 S3 S3 S3	CONDU 1 3/ 3/ 3/ 3/ 1 1	IT SIZE " 4" 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP
MBOL S S1 S13 S2 S23 S3 S3 S3 S4	CONDU 1 3/ 3/ 3/ 3/ 1 1 1	IT SIZE " 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP
MBOL S S1 S13 S2 S23 S33 S33 S4 S5	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP
VBOL S S1 513 S2 523 S33 S33 S33 S4 S5 S6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP
MBOL S S1 S13 S2 S33 S33 S4 S5 S6 S7 MBOL S1 S1 S1 S1 S1 S1 S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	CONDU 1 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP
MBOL S S1 S13 S2 S3 S3 S3 S3 S4 S5 S6 S7 S8 S9 V MBOL V N S1 S1 S1 S1 S2 S2 S2 S3 S3 S3 S3 S4 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP
ABOL S 51 13 52 23 53 53 53 53 53 54 55 56 57 58 59 10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 2	IT SIZE " 4" 4" 4" 4" 4" " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $1-3/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP
MBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 10-2/C#16 TSP 8/C#18
IBOL 5 5 13 22 23 33 4 5 5 5 6 7 7 8 10 C1 IBOL	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
BOL 3 1 2 2 3 3 4 5 6 7 8 9 10 C1 CC BOL 2 2 2 3 3 4 5 5 6 7 8 9 10 C1 2 2 2 2 3 3 4 5 5 6 7 8 9 10 2 2 2 3 3 3 4 5 5 6 7 2 2 2 3 3 3 4 5 5 6 7 7 8 9 10 2 10 10 10 10 10 10 10 10 10 10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 TSCHEDULE CONDUCTORS 2#14
IBOL 5 13 2 2 3 3 4 5 6 7 8 9 10 C1 IBOL 2 4 4 2 4 2 4 2 4 2 2 4 2 2 2 2 2 2 3 3 4 5 5 6 7 8 9 10 2 2 2 2 3 3 4 5 5 6 6 7 8 9 10 2 2 2 2 3 3 4 5 5 6 6 7 8 9 10 2 10 10 10 10 10 10 10 10 10 10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18 CONDUCTORS 2#14 4#14
1BOL S 51 13 52 23 33 34 55 56 57 58 59 10 C1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 TSCHEDULE CONDUCTORS 2#14
ABOL S S1 13 S2 23 S3 S4 S5 S6 S7 S8 S9 10 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" 4" 7 7 7 7 7	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 CONDUCTORS 2/14 4/14 5/14 6/14 7/14
ABOL S S1 13 22 23 53 53 53 53 54 55 56 57 58 59 10 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
ABOL S S1 13 223 33 33 34 55 56 57 58 59 10 C C ABOL C ABOL C 22 24 25 26 27 28 29 10 10 10 10 10 10 10 10 10 10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18
1BOL S 51 13 52 23 33 54 55 56 57 58 59 10 C1 IBOL 22 24 25 26 27 28 29 10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8/C\#18$ CONDUCTORS 2#14 4#14 6#14 6#14 10-2/C#16 TSP 8/C#18 CONDUCTORS 2#14 4#14 9#14 9#14 9#14 9#14 9#14 9#14 9#14 9#14 9#14
ABOL S S1 13 52 23 53 54 55 56 57 58 59 10 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" 4" " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 T SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14
ABOL S S1 13 52 23 53 33 54 55 56 57 58 59 10 C C ABOL C C ABOL C C C C C C C C C C C C C	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" " " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $4-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8/C\#18$ CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$ $10\#14$ $12\#14$ $10\#14$ $2/2/14$
BOL 3 1 3 2 2 3 3 4 5 6 7 8 9 0 1 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 4 5 6 7 8 9 0 1 2 1 2 2 3 3 4 5 5 6 7 8 9 0 1 1 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8/C\#18$ CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$ $10\#14$ $12\#14$ $16\#14$ $20\#14$
BOL 1 3 2 3 3 3 3 3 3 4 5 5 7 3 3 4 5 5 7 3 9 0 2 1 C C C C C C C C C C C C C	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" 4" " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8/C\#18$ CONDUCTORS $2/\#14$ $6/\#14$ $7/\#14$ $8/\#14$ $9/\#14$ $10/\#14$ $10/\#14$ $10/\#14$ $10/\#14$ $10/\#14$ $10/\#14$ 10
BOL 3 3 3 3 3 3 3 3 3 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IT SIZE " 4" 4" 4" 4" 4" 4" 4" " " " " " " " "	CONDUCTORS VENDER PROVIDED $1-2/C\#16$ TSP $2-2/C\#16$ TSP $2-2/C\#16$ TSP $2-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $3-3/C\#16$ TSP $3-2/C\#16$ TSP $3-2/C\#16$ TSP $5-2/C\#16$ TSP $5-2/C\#16$ TSP $6-2/C\#16$ TSP $7-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $8-2/C\#16$ TSP $9-2/C\#16$ TSP $8-2/C\#16$ TSP $8/C\#18$ CONDUCTORS $2\#14$ $4\#14$ $5\#14$ $6\#14$ $7\#14$ $8\#14$ $9\#14$ $10\#14$ $12\#14$ $16\#14$ $20\#14$

	power cae	BLE/CONDU	IT SCHEDULE
MBOL	CONDUIT SIZE	CONDUCTOR	S* GND*
P22	3/4"	(2)#12	(1)#12
P24	3/4"	(4)#12	(1)#12
P26 P32	<u> </u>	<u>(6)#12</u> (2)#10	<u>(1)#12</u> (1)#10
P33	3/4"	(3)#10	(1)#10
P53	3/4"	(3)#8	(1)#10
P54	3/4"	(4)#8	(1)#10
P63 P64	1"	(3)#6 (4)#6	(1)#8 (1)#8
P83	1 1/4"	(3)#4	(1)#8
P84	1 1/4"	(4)#4	(1)#8
P103	1 1/2"	(3)#3	(1)#6
P104 P113	<u>1 1/2"</u> 1 1/2"	(4)#3 (3)#2	<u>(1)#6</u> (1)#6
P114	1 1/2"	(4)#2	(1)#6
P133	2"	(3)#1	(1)#6
P134 P153	<u>2"</u> 2"	(4)#1	(1)#6
P153 P154	<u> </u>	(3)#1/0 (4)#1/0	<u>(1)#6</u> (1)#6
P173	2 1/2"	(3)#2/0	(1)#6
P174	2 1/2"	(4)#2/0	(1)#6
P203	2 1/2"	(3)#3/0	(1)#4
P204 P233	<u>2 1/2"</u> 3"	(4)#3/0 (3)#4/0	<u>(1)#4</u> (1)#4
P234	<u> </u>	(4)#4/0	(1)#4
P253	3"	(3)250KCMIL	(1)#4
P254	3"	(4)250KCMIL	
P304	3"	(4)350KCMIL	(1)#4
IE	LE/DATA CAE	BLE/COND	UIT SCHEDULE
YMBOL	CONDUIT SI	ZE	CABLES
TD1	1"		1 0470
TD1 FO1	1"		1–CAT6 6–STRAND FIBER OPTIC CABLE
101	I		
	SIGNAL CABI	_E/CONDU	IT SCHEDULE
YMBOL		E/CONDU	IT SCHEDULE CONDUCTORS
	CONDU	IIT SIZE	CONDUCTORS
YMBOL S	CONDU 1	IIT SIZE "	CONDUCTORS VENDER PROVIDED
S S1 S13	CONDU 1 3/ 3/	IIT SIZE " (4" (4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP
S S1 S13 S2	CONDU 1 3/ 3/ 3/ 3/	IIT SIZE " (4" (4" (4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP
S S1 S13 S2 S23	CONDU 1 3/ 3/ 3/ 3/ 3/	IIT SIZE " (4" (4" (4" (4")	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP
S S1 S13 S2 S23 S3	CONDU 1 3/ 3/ 3/ 3/	IIT SIZE " (4" (4" (4" (4" "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP
S S1 S13 S2 S23	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1	IIT SIZE " (4" (4" (4" " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP
S S1 S13 S2 S23 S3 S33 S4 S5	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1	IIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP
S S1 S13 S2 S23 S3 S33 S4 S5 S6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1	IIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP
S S1 S13 S2 S23 S33 S4 S5 S6 S7	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" 4" 	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP
S S1 S13 S2 S23 S3 S33 S4 S5 S6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " (4" (4" (4" (4" (4" (4" (4" (4" (4" (CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP
S S1 S13 S2 S23 S3 S3 S4 S5 S6 S7 S8 S9	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP
S1 S13 S2 S23 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP
S S1 S13 S2 S23 S3 S3 S3 S4 S5 S6 S7 S8 S9 S10 TC1 CC YMBOL C2	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	UT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 10-2/C#16 TSP 8/C#18
S S1 S13 S2 S23 S3 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C YMBOL C2 C2 C4	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14
S S1 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 TC1 YMBOL C2 C4 C5 C6	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" * * <tr< td=""><td>CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14</td></tr<>	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " " " " " " " " " " " " " " " " " " "	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14
S S1 S13 S2 S23 S3 S33 S4 S5 S6 S7 S8 S9 S10 TC1 TC1 YMBOL C C2 C4 C5 C6 C7 C8 C9 C9	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" " " " " " " " " " " " " " " " " " " * <tr< td=""><td>CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2/14 4/14 5/14 6/14 7/#14 8/14 9/#14</td></tr<>	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2/14 4/14 5/14 6/14 7/#14 8/14 9/#14
S S1 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 TC1 YMBOL C2 C4 C5 C6 C7 C8 C9 C10	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" " " " " " " " " " " " " " " " " * <tr< td=""><td>CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14</td></tr<>	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14
S S13 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" 4" " " " " " " " " " " " " " " " " * <tr< td=""><td>CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14</td></tr<>	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" " " " " " " " " " " " " " " " " " *	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14 16#14
S S1 S13 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C2 C4 C5 C6 C7 C8 C9 C10 C12	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" " " " " " " " " " " " " " " " " *	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C1 C2 C4 C5 C6 C7 C8 C9 C10 C12 C16 C20 C30 C60	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" * *	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2/14 4/#14 5/#14 6/#14 7/#14 8/#14 9/#14 10/#14 12/#14 6/#14 7/#14 8/#14 9/#14 10/#14 12/#14 6/#14
S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 VBOL C2 C4 C5 C6 C7 C8 C9 C10 C12 C16 C20 C30	CONDU 1 3/ 3/ 3/ 3/ 1 1 1 1 1 1 1 1 1 1 1 1 1	IIT SIZE " 4" 4" 4" " " " " " " " " " " " " " " " " *	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8/C#18 JIT SCHEDULE CONDUCTORS 2#14 4#14 5#14 6#14 7#14 8#14 9#14 10#14 12#14

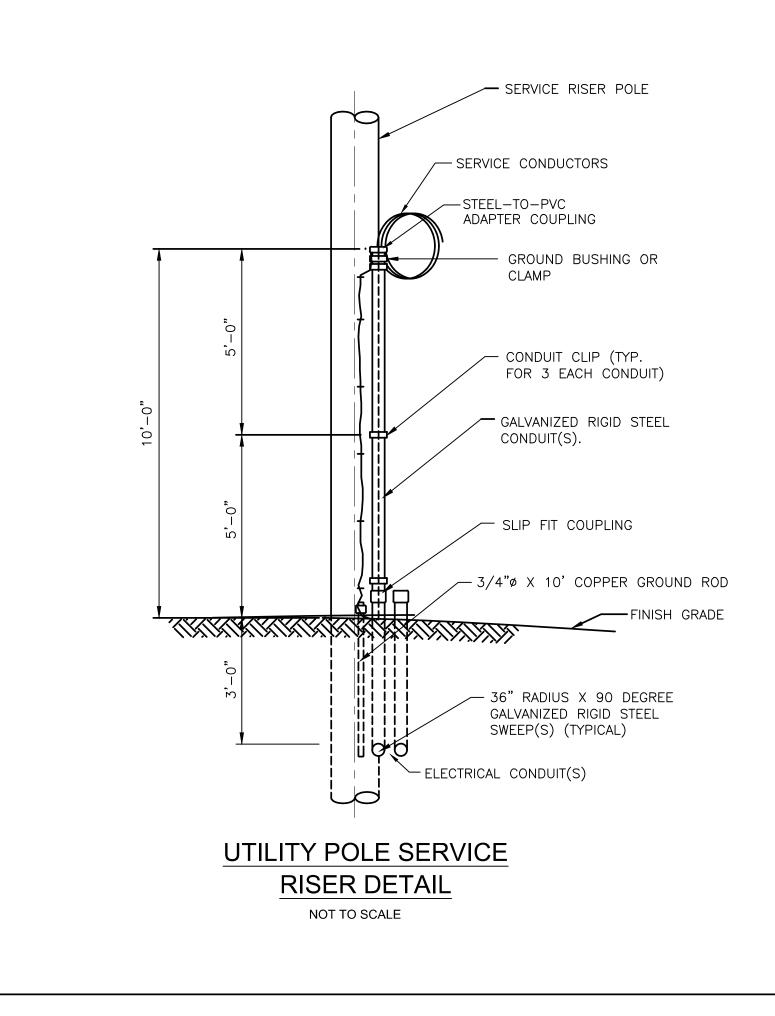
	POWER CAB	LE/CONDUIT S	SCHEDULE
SYMBOL	CONDUIT SIZE	CONDUCTORS*	GND*
P22	3/4"	(2) #12	(1) #12
P24	3/4"	(2)#12 (4)#12	(1)#12 (1)#12
P26	3/4"	(6)#12	(1)#12
P32	3/4"	(2)#10	(1)#10
P33	3/4"	(3)#10	(1)#10
P53	3/4"	(3)#8	(1)#10
P54 P63	<u>3/4"</u> 1"	(4)#8	(1)#10
P64	1"	(3)#6 (4)#6	<u>(1)#8</u> (1)#8
P83	1 1/4"	(3)#4	(1)#8
P84	1 1/4"	(4)#4	(1)#8
P103	1 1/2"	(3)#3	(1)#6
P104 P113	<u> </u>	(4)#3	(1)#6
P114	1 1/2"	(3)#2 (4)#2	<u>(1)#6</u> (1)#6
P133	2"	(3)#1	(1)#6
P134	2"	(4)#1	(1)#6
P153	2"	(3)#1/0	(1)#6
P154 P173	<u>2"</u> 2 1/2"	(4)#1/0	(1)#6
P173 P174	2 1/2	(3)#2/0 (4)#2/0	<u>(1)#6</u> (1)#6
P203	2 1/2"	(3)#3/0	(1)#4
P204	2 1/2"	(4)#3/0	(1)#4
P233	3"	(3)#4/0	(1)#4
P234	<u> </u>	(4)#4/0	(1)#4
P253 P254	<u> </u>	(3)250KCMIL (4)250KCMIL	<u>(1)</u> #4 (1)#4
P304	3"	(4)350KCMIL	(1)#4
тс	LE/DATA CAE		
		DLE/CONDUIT	SCHEDULE
YMBOL	CONDUIT SIZ	Έ	CABLES
TD1	1"		1-CAT6
FO1	1"	6-51	
			RAND FIBER OPTIC CABLE
			RAND FIBER OPTIC CABLE
	SIGNAL CABL		
	SIGNAL CABL	E/CONDUIT S	
r		E/CONDUIT S T SIZE	SCHEDULE
YMBOL	CONDUI	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS
YMBOL S S1 S13	CONDUI 1" 3/4 3/4	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP
YMBOL S S1 S13 S2	CONDUI 1" 3/2 3/2 3/2	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP
YMBOL S S1 S13 S2 S23	CONDUI 1" 3/2 3/2 3/2 3/2 3/2	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP
YMBOL S S1 S13 S2	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1"	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S4	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1"	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1"	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5 S6	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 1" 1	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S33 S4 S5 S6 S7	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1 1/ 1 1/ 1 1/	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5 S6	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 1" 1	E/CONDUIT S T SIZE 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S33 S4 S5 S6 S7 S6 S7 S8 S9 S10	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1 1/ 1 1/ 1 1/ 1 1/ 2"	E/CONDUIT S T SIZE	CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 10-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S33 S4 S5 S6 S6 S7 S8 S8 S9	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 11/ 11/ 11/ 11/ 11	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1 1/ 1 1/ 1 1/ 1 1/ 2"	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1 1/ 1 1/ 1 1/ 1 1/ 1 1/ 2" 3/2	E/CONDUIT \$	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP 8-2/C#16 TSP
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 11/ 11/ 11/ 11/ 11	E/CONDUIT \$ T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8-2/C#18
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C YMBOL C2 C4	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C1 YMBOL C2 C4 C5 S6 S7 S8 S9 S10 TC1	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 11/ 11/ 11/ 11/ 11	E/CONDUIT \$	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 4-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C YMBOL C2 C4 C5 C6 C C C C C C C C C C C C C	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 11/ 11/ 11/ 11/ 11	E/CONDUIT \$	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 VMBOL C2 C4 C2 C4 C5 C6 C7	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3/C#18
YMBOL S S1 S13 S2 S23 S33 S33 S4 S5 S6 S7 S8 S9 S10 TC1 C YMBOL C2 C4 C5 C6 C C C C C C C C C C C C C	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 1" 1" 1" 11/ 11/ 11/	E/CONDUIT \$ T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1 VMBOL C2 C4 C5 C6 C7 C8	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 9-2/C#16 TSP 3/C#18
YMBOL S S1 S13 S2 S23 S33 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1 VMBOL C2 C4 C5 C6 C7 C8 C9 C10 C12	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 3-2/C#16 TSP 3/C#18
YMBOL S S1 S13 S2 S23 S3 S3 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1 C VMBOL C2 C4 C5 C6 C7 C8 C9 C10 C12 C16	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S3 S3 S3 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1 C VMBOL C2 C4 C5 C6 C7 C8 C9 C10 C12 C16 C20	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S S1 S13 S2 S23 S3 S3 S4 S5 S6 S7 S6 S7 S8 S9 S10 TC1 C VMBOL C2 C4 C5 C6 C7 C8 C9 C10 C12 C16	CONDUI 1" 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT S T SIZE	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-3/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 6-2/C#16 TSP 7-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 8-2/C#16 TSP 8/C#18
YMBOL S1 S13 S2 S23 S33 S4 S5 S6 S7 S8 S9 S10 TC1 YMBOL C2 C4 C5 C6 C7 C8 C9 C10 C12 C16 C20 C30	CONDUI 1" 3/2 3/2 3/2 3/2 3/2 1" 1" 1" 11/ 11/ 11/ 11/ 11/ 1	E/CONDUIT \$	SCHEDULE CONDUCTORS VENDER PROVIDED 1-2/C#16 TSP 1-3/C#16 TSP 2-2/C#16 TSP 2-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 3-2/C#16 TSP 5-2/C#16 TSP 5-2/C#16 TSP 8-2/C#16 TSP 9-2/C#16 TSP 9-2/C#16 TSP 8/C#18

NOTE: CONDUIT AND CONDUCTOR SIZES ARE TO BE PER THE ABOVE SCHEDULES UNLESS OTHERWISE NOTED.

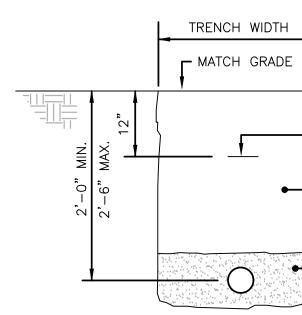




ABB SHEET

APPROVED BY


46 of 59

DUCT / CABLE SCHEDULE						
DUCT NO.	SIZE	CONDUCTORS	FROM	TO		
D1	3"	(4) 350KCMIL	UTILITY POLE	MCB		
D2	3"	PULL STRING	UTILITY POLE	STUB UP BELOW MCB		
D3	3"	(4) 350KCMIL, #4 GND	GENERATOR	GENERATOR DISCONNECT SWITCH		
D4	1"	(4) #12, #12GND	LP3 PANELBOARD	GENERATOR AUXILLARY SYSTEMS		
D5	1"	(12) #14	GENERATOR	ATS, EMERGENCY STOP, SCADA RTU PANEL		
D6	2"	(4) #4/0, #6 GND	MDP	WELL STATION #3 DP1		
D7	3"	12 STRAND FIBER OPTIC CABLE	FILTER BUILIDING FIBER OPTIC PATCH PANEL	WELL STATION #3 FIBER OPTIC PATCH PANEL		



1. BACKFILL DUCT BANK IN LAYERS AND MANUALLY TAMP OR "PUDDLE" CONCRETE FILL. PROVIDE RED DUCT BANK MARKER TAPES, READING "CAUTION - ELECTRICAL LINES BELOW", OVER ENTIRE LENGTH OF DUCTLINE. LOCATE TAPES 12 INCHES BELOW GRADE. PROVIDE A TAPE FOR EVERY 12 INCHES OF WIDTH OF DUCTLINE.

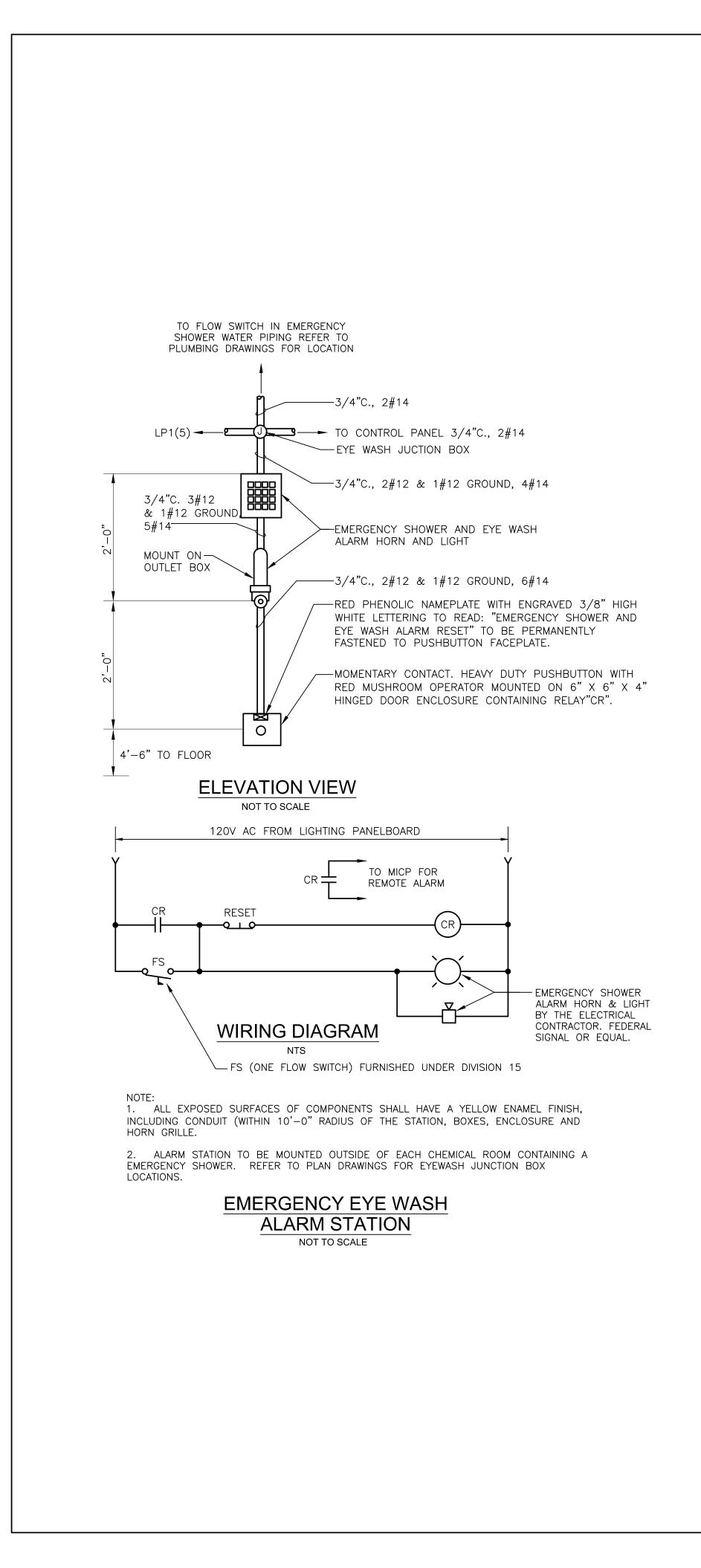
2. A MINIMUM OF 12" SEPARATION SHALL BE KEPT BETWEEN DUCT BANK SECTIONS WITHIN SAME TRENCH.

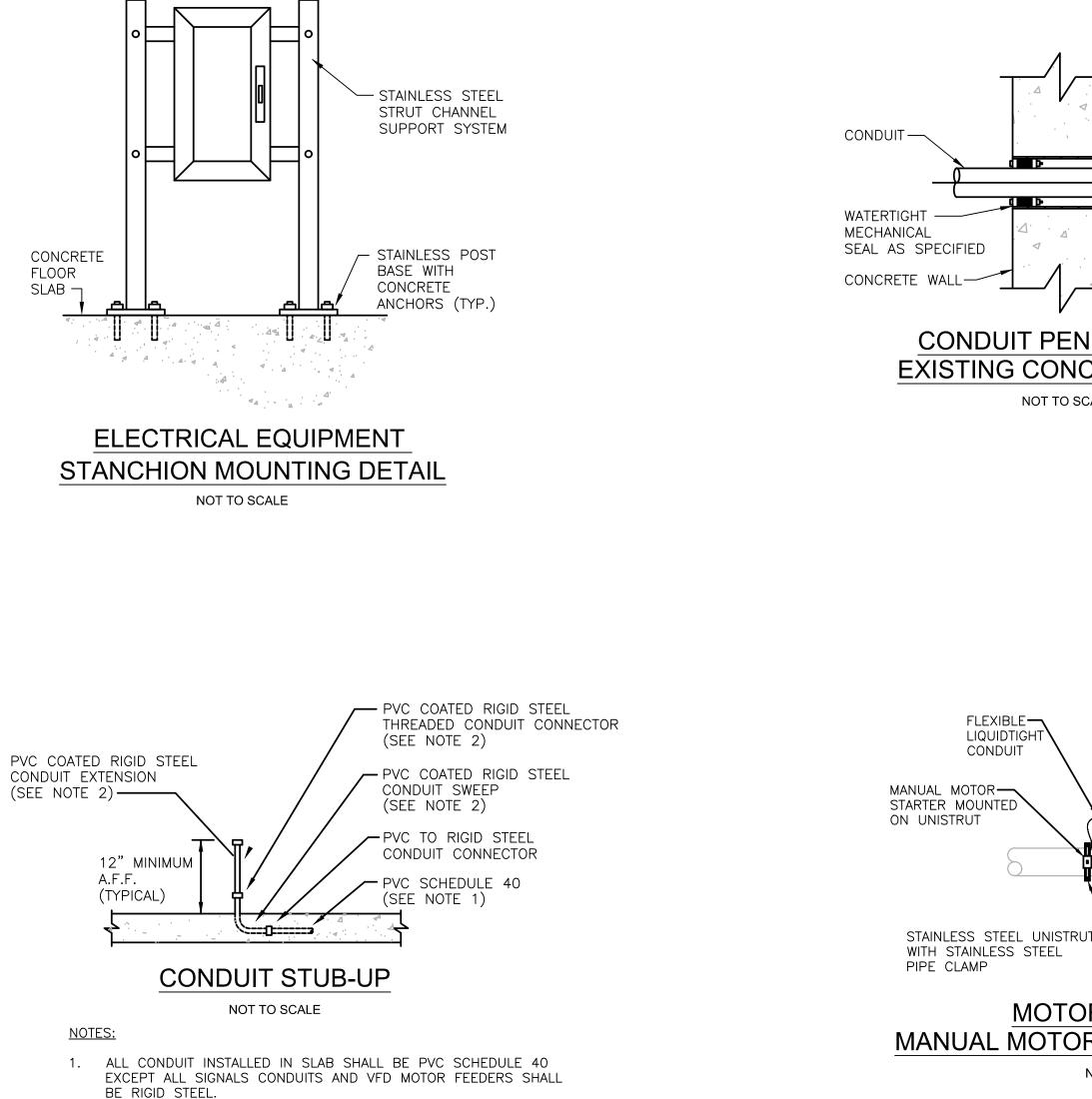
3. REINFORCING STEEL SHALL BE #5 REBAR WITH CROSS SECTION SPACED EVERY 24". CONCRETE TO BE RATED FOR 3000 PSI AFTER 28 DAYS.

DUCTBANK SECTIONS NO SCALE

<u>NOTES:</u>

- 1. BACKFILL IN LAYERS AND MANUALLY TAI MARKER TAPE, READING "CAUTION - EL ENTIRE LENGTH OF DUCTLINE. LOCATE PROVIDE A TAPE FOR EVERY 12 INCHES
- 2. TRENCHING AND BACKFILLING SHALL BE THIS CONTRACT.


SINGLE UNDERGROUND


NOT TO SC

	Sig	ned By:	#	⁴ 12345	
2			DSN	СНК	
	REV	DESCRIPTION	DWN	APP	DATE
		SAR ENGINEERING, INC.	Mechanical/Electrica 150 Grossman Drive, Braintree, Massachus 617 221-9220 web: www.sar.com SCALE VE THIS BAR IS 1 ON ORIGIN	RIFIC	LENGTH
GRADE			0 IF IT'S NOT 1 SHEET AC SCALES AC	INCH O	1" J N THIS OUR
WELL COMPACTED FILL		ORIGINAL DRAWIN		34	
FREE OF LARGE STONES		ELECT	RICAL	01	
2" MIN. TAMPED SAND ABOVE AND BELOW CONDUIT	-	SITE DE FOWN OF MILLIS, M WELL 3 PFAS WT	MASSACHL		
IP. PROVIDE RED DUCT BANK ECTRICAL LINES BELOW", OVER APE 12 INCHES BELOW GRADE. G OF WIDTH OF DUCTLINE. PERFORMED UNDER DIVISION 2 OF		GRADE ALLER			
CONDUIT SECTION	DEPAR	TOWN OF IMENT OF PUBLIC WO 900 MAIN ST, MI	RKS ENGINEE		DIVISION
		PERMIT RE	VIEW SE	Т	
NOT FOR CONSTRUCTION	ISSUE CURRE DESIG	CT NO. 20233667.002ADATESEPT. 2023ENT REVISION-NED BYMCN BYRLB	E-	403	
		KED BY MC DVED BY ABB	SHEET	47	of 59

KLEINFELDER

Bright People. Right Solutions.

2. ALL PVC COATED RIGID STEEL CONDUIT WHICH HAS BEEN FIELD CUT OR DAMAGED SHALL BE SPRAYED OR PAINTED WITH A PVC COATING ACCEPTABLE FOR USE TO REPAIR OR SEAL PVC COATED RIGID STEEL CONDUIT. ONLY MANUFACTURER APPROVED PVC COATING SEALANT SHALL BE ACCEPTABLE.

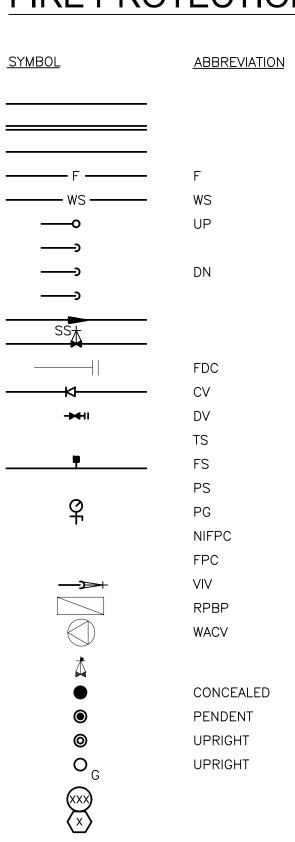
	KLEINFELDER Bright People. Right Solutions.
CORED HOLE DIAMETER AS REQUIRED BY SEAL MANUFACTURE	Signed By: # 12345
PACK AND SEAL OPENING	REV DESCRIPTION DSN CHK DWN APP
ZINETRATION NCRETE WALL DISCALE	
MOTORIZED VALVE	STATE ISO Grossman Drive, Suite 309 Braintree, Massachusetts 02184 617 221-9220 web: www.sar.com
ORIZED VALVE OR STARTER MOUNTING NOT TO SCALE	SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY
NOTTO SCALL	ORIGINAL DRAWING SIZE IS 22 x 34 ELECTRICAL
	DETAILS TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN
	TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET
NOT FOR CONSTRUCTION	PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY MC DRAWN BY RLB CHECKED BY MC APPROVED BY ABB SHEET 48 of 59

FIRE PROTECTION NOTES

- 1. THE WORK COVERED CONSISTS OF FURNISHING ALL LABOR AND MATERIALS NECESSARY TO INSTALL, COMPLETE AND READY FOR CONTINUOUS OPERATION, THE FIRE PROTECTION SYSTEMS, APPARATUS AND EQUIPMENT FOR THIS PROJECT.
- 2. ALL EQUIPMENT AND MATERIALS FURNISHED UNDER THE FIRE PROTECTION FSB. LABOR AND TESTING PERFORMED HEREIN SHALL BE IN COMPLETE ACCORDANCE WITH THE STATE BUILDING CODE, ALL LOCAL CODES AND REGULATIONS. NATIONAL FIRE PROTECTION ASSOCIATION, INSURANCE REGULATIONS AND REQUIREMENTS GOVERNING SUCH WORK.
- 3. ANY AND ALL PERMITS REQUIRED FOR INSTALLATION OF ANY MATERIAL SHALL BE OBTAINED AS PART OF THE WORK OF THE SPECIFICATION, INCLUDING ALL FEES OR EXPENSES INCURRED.
- 4. IT IS THE INTENT OF THESE DOCUMENTS THAT THE ENTIRE BUILDING BE 100% SPRINKLED, INCLUDING ELECTRIC ROOMS.
- 5. PROVIDE A COMPLETE HYDRAULICALLY CALCULATED SPRINKLER SYSTEM THROUGHOUT THE BUILDING. ALL WORK SHALL BE IN STRICT CONFORMANCE WITH NFPA 13 (2013) AND INCLUDING ALL RULES AND REGULATIONS OF THE LOCAL FIRE DEPARTMENT.
- 6. SPRINKLERS, PIPING AND THEIR LAYOUT SHOWN ON THE DRAWINGS ARE SCHEMATIC AND ARE SHOWN ON THE DRAWINGS ONLY AS A GUIDE AND AID TO THE CONTRACTOR IN PREPARATION OF THE FABRICATION DRAWINGS. THE SPRINKLERS, PIPING AND THEIR LAYOUT ARE NOT INTENDED TO SHOW EVERY OFFSET AND FITTING. ADDITIONAL OFFSETS AND FITTINGS WILL BE REQUIRED TO BE INSTALLED WHEN COORDINATING WITH ALL TRADES TO AVOID WHERE CONFLICTS MAY OCCUR THAT MAY NOT BE INDICATED ON THE DRAWINGS, SUCH AS, BUT NOT LIMITED TO: BEAMS, COLUMNS, DUCTWORK, LIGHTING, OR PIPING. MODIFICATION TO THE SPRINKLER SPACING WILL BE ALLOWED AT NO COST TO THE PROJECT SUBJECT TO ARCHITECT'S/ENGINEER'S APPROVAL AND CONTINUED COMPLIANCE WITH NFPA 13 (2013).
- 7. THE FIRE PROTECTION CONTRACTOR SHALL PREPARE WORKING DRAWINGS OF THE SPRINKLER WORK AND OBTAIN APPROVALS FROM THE LOCAL FIRE DEPARTMENT PRIOR TO INSTALLATION.
- 8. ROUTING OF SPRINKLER MAINS, BRANCHES AND SPRINKLERS SHALL BE THOROUGHLY COORDINATED WITH OTHER TRADES AND THE BUILDING STRUCTURE PRIOR TO SUBMISSION OF COORDINATED SHOP DRAWINGS.
- 9. SPRINKLERS IN AREAS WITH NO FINISHED CEILING SHALL BE UPRIGHT TYPE, LOCATED AS HIGH AS POSSIBLE, SPRINKLERS SUBJECT TO POTENTIAL PHYSICAL DAMAGE SHALL BE INSTALLED WITH LISTED PROTECTIVE CAGES.
- 10. SPRINKLERS INSTALLED BELOW SLOPED CEILINGS OR ROOFS, SHALL BE INSTALLED IN STRICT ACCORDANCE TO NFPA 13 (2013) AND SPRINKLER MANUFACTURER'S INSTALLATION LISTING.
- 11. SPRINKLERS IN AREAS WITH FINISHED CEILING SHALL BE CONCEALED TYPE WITH FACTORY PAINTED COVER PLATES. COVER PLATE COLORS SHALL BE COORDINATED WITH ENGINEER FOR FINAL APPROVAL OF THE COLOR SELECTION.
- 12. SPRINKLERS SHALL BE LOCATED ABOVE AND BELOW ALL DUCTWORK GREATER THAN 4'-0" IN WIDTH.
- 13. MISCELLANEOUS DISCREPANCIES OR OMISSIONS WHICH MIGHT APPEAR ON THE DRAWINGS OR IN THE SPECIFICATIONS WILL NOT RELIEVE THE FIRE PROTECTION SUB-CONTRACTOR OF CODE COMPLIANCE.
- 14. SPRINKLER PIPING SHALL NOT BE INSTALLED TO PASS OVER ELECTRIC PANELS. PROVIDE SHEET METAL PROTECTIVE SHIELDS OVER ELECTRIC PANELS.
- 15. BACKFLOW PREVENTION DEVICES SHALL BE PROVIDED WITH A HOSE VALVE TEST HEADER ASSEMBLY PIPED TO EXTERIOR OR OTHER ACCEPTED MEANS THAT ALLOWS FOR FULL FLOW TESTING OF SYSTEM DEMAND IN ACCORDANCE WITH NFPA 13 (2013).
- 16. REFER TO DESIGN CRITERIA FOR SPRINKLER DENSITY AND AREA OF APPLICATION.
- 17. REFER TO ARCHITECTURAL SECTIONS AND ELEVATIONS FOR EXACT LOCATION OF EXTERIOR PENETRATIONS.

FIRE PROTECTION DESIGN CRITERIA

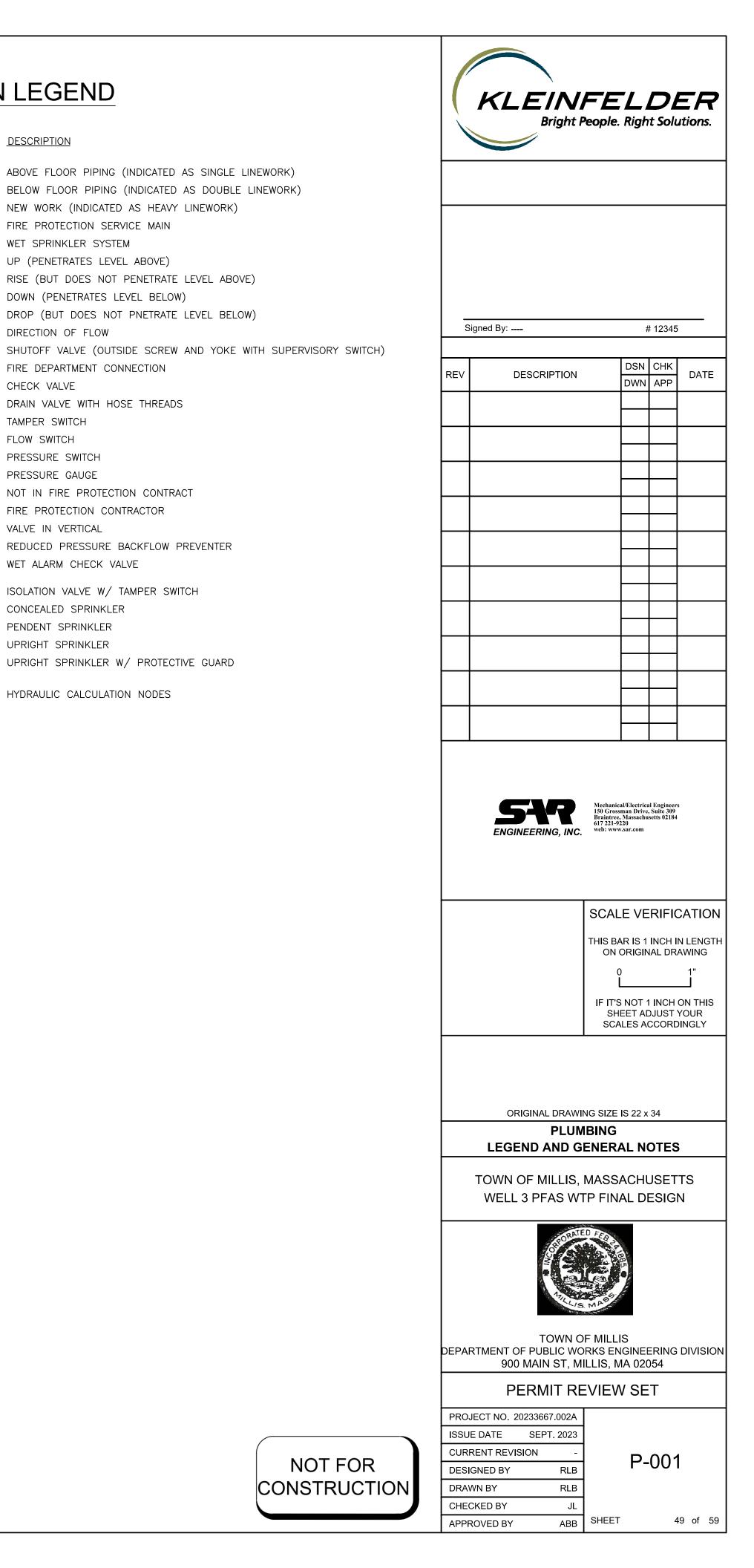
FIRE PROTECTION LEGEND

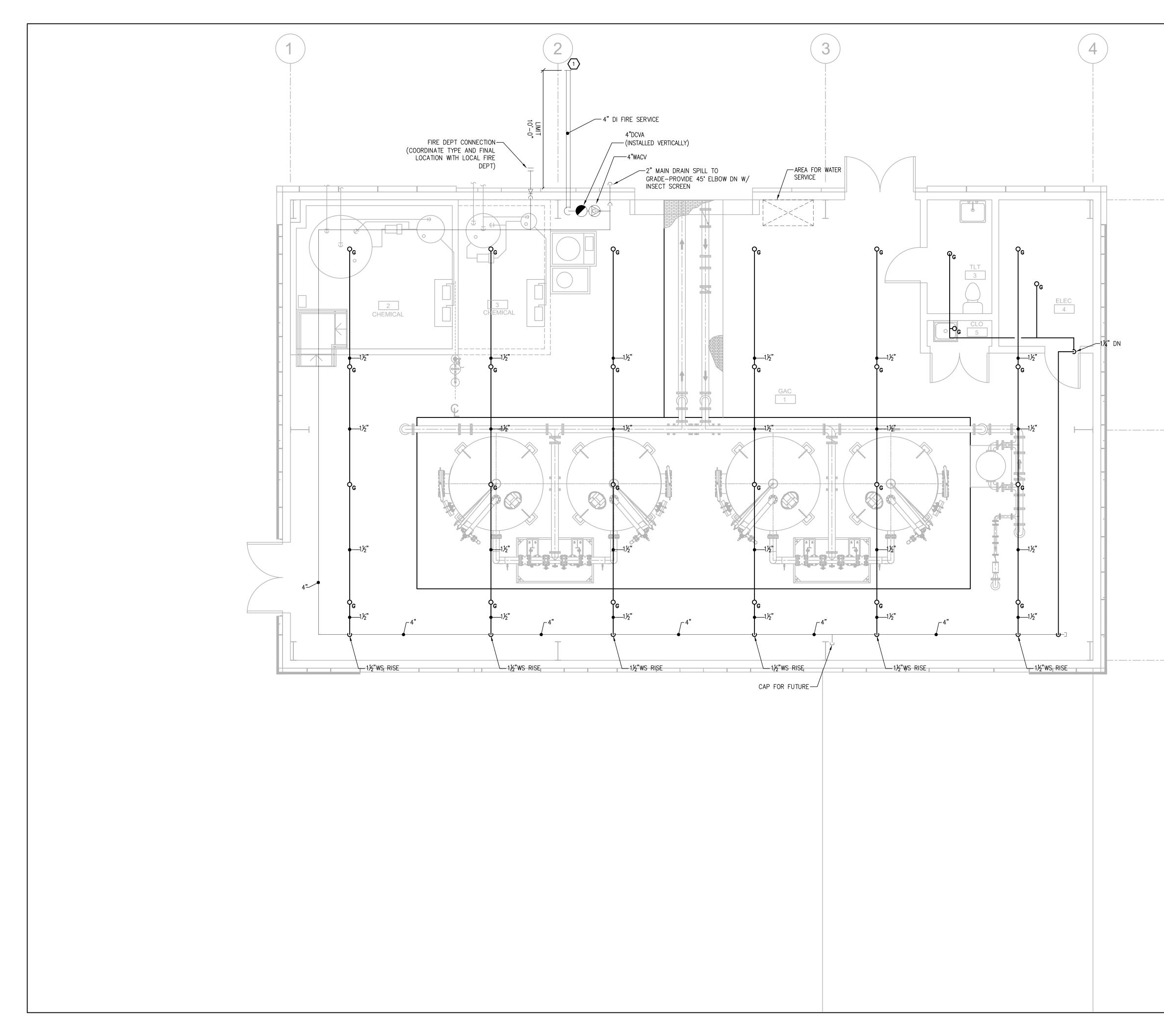

1. FIRE SUPPRESSION CRITERIA

- A. THE FIRE PROTECTION FSB SHALL MAKE PROVISIONS FOR OBTAINING UPDATED HYDRANT FLOW TEST INFORMATION FOR THIS PROJECT. ANY FLOW TEST INFORMATION NOTED IN THE CONTRACT DOCUMENTS ARE CONSIDERED PRELIMINARY. A NEW FLOW TEST SHALL BE REQUIRED AT THIS CONTRACTOR'S EXPENSE.
- B. THE FOLLOWING SPRINKLER DESIGN DENSITIES SHALL BE USED FOR SPRINKLER SYSTEM PIPE SIZING:

ORDINARY HAZARD OCCUPANCIES GROUP 1

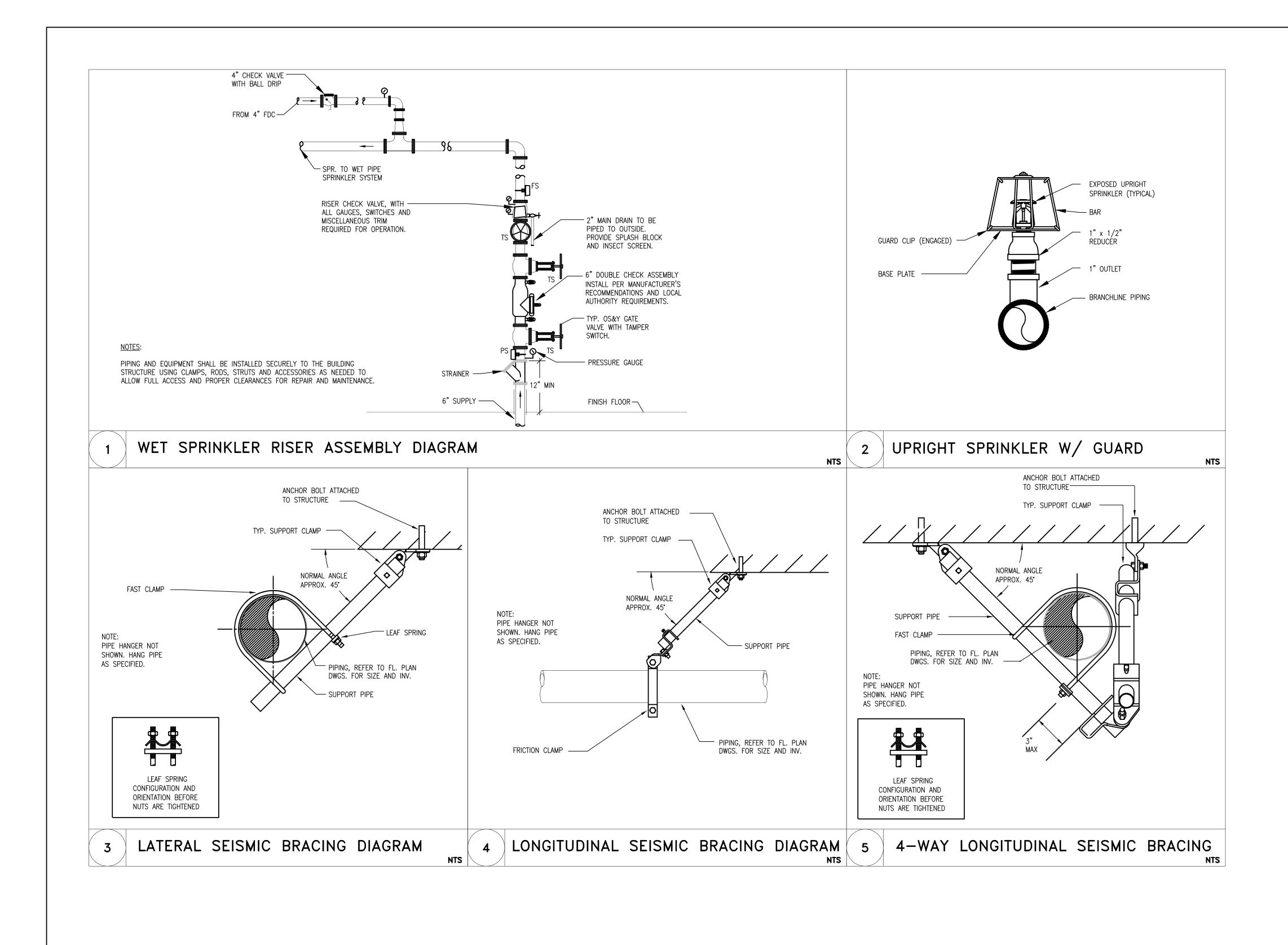
DESIGNED FOR 0.15 GPM OVER THE MOST REMOTE 1500 SQUARE FEET. MAXIMUM SPACING OF 130 SQUARE FEET PER SPRINKLER, UNLESS NOTED OTHERWISE. INCLUDE 250 GPM FOR INSIDE HOSE STREAM ALLOWANCE AS PART OF THE CALCULATION. MAXIMUM VELOCITIES SHALL NOT EXCEED 20 FEET PER SECOND.

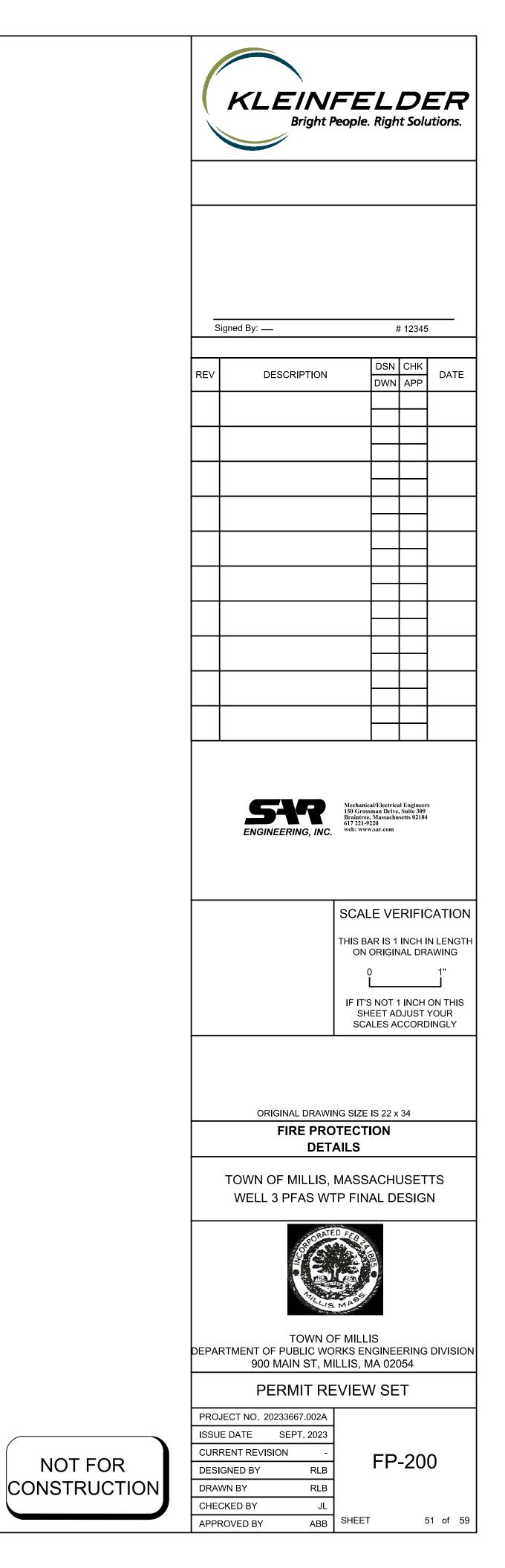

- C. FIRE PROTECTION SIGNALING SYSTEMS CONTROL EQUIPMENT AND ANNUNCIATOR PANEL ARE SHOWN ON THE ELECTRICAL DRAWINGS.
- D. THE SPRINKLER LAYOUT SHOWN ON THESE DRAWINGS SHALL BE HYDRAULICALLY CALCULATED. THE RESULTS OF THE HYDRAULIC CALCULATION SHALL SHOW THAT THERE IS SUFFICIENT PRESSURE TO OPERATE THE REQUIRED NUMBER OF SPRINKLERS AT THE MOST REMOTE DESIGN AREAS. PIPE SIZES AND NODE LOCATIONS HAVE BEEN SHOWN ON THE DRAWINGS TO INDICATE DESIGN INTENT
- THE SPRINKLER CONTRACTOR SHALL FOLLOW THE DESIGN CRITERIA INDICATED ON THE DRAWINGS, BUT WILL BE ALLOWED TO VARY THE PIPE SIZES TO ALLOW FOR COORDINATION AND MINOR CHANGES IN THE PREPARATION.
- 2. SEQUENCE OF OPERATION
 - A. WET SPRINKLER SYSTEM: THE WET PIPE SYSTEM EMPLOYS AUTOMATIC (CLOSED FUSIBLE LINK) SPRINKLERS ATTACHED TO PIPING CONTAINING WATER UNDER PRESSURE AT ALL TIMES. WHEN A FIRE OCCURS, INDIVIDUAL SPRINKLERS ARE ACTIVATED BY HEAT AND WATER FLOWS IMMEDIATELY. THE FLOW OF WATER RAISES THE ALARM CHECK VALVE CLAPPER FROM ITS SEAT, THIS ALLOWS WATER TO ENTER THE ALARM LINE. THE FLOW SWITCH ON THE ALARM LINE ACTIVATES A LOCAL AUDIBLE ALARM PROVIDING AN ELECTRIC SIGNAL, WHICH IS SENT TO THE FIRE ALARM CONTROL PANEL, THIS SIGNAL IS FORWARDED TO THE LOCAL FIRE DEPARTMENT. A FIRE DEPARTMENT CONNECTION IS CONNECTED TO THE SUPPLY SIDE OF THE SYSTEM FOR USE BY THE LOCAL FIRE DEPARTMENT PUMPER TRUCK.
- 3. TESTING CRITERIA FOR FINAL ACCEPTANCE
 - APPROVAL OF SPRINKLER SYSTEM: THE INSTALLING SPRINKLER CONTRACTOR SHALL:
 - a. NOTIFY THE AUTHORITY HAVING JURISDICTION AND OWNER'S REPRESENTATIVE OF THE TIME AND DATE TESTING WILL BE PERFORMED.
 - b. PERFORM ALL REQUIRED ACCEPTANCE REQUIREMENTS LISTED IN NFPA 13 (2013) HYDROSTATIC TESTS.
 - c. COMPLETE AND SIGN THE APPROPRIATE CONTRACTOR'S MATERIAL AND TEST CERTIFICATES.
 - B. COMPLETE AS-BUILT DRAWINGS AS SPECIFIED.

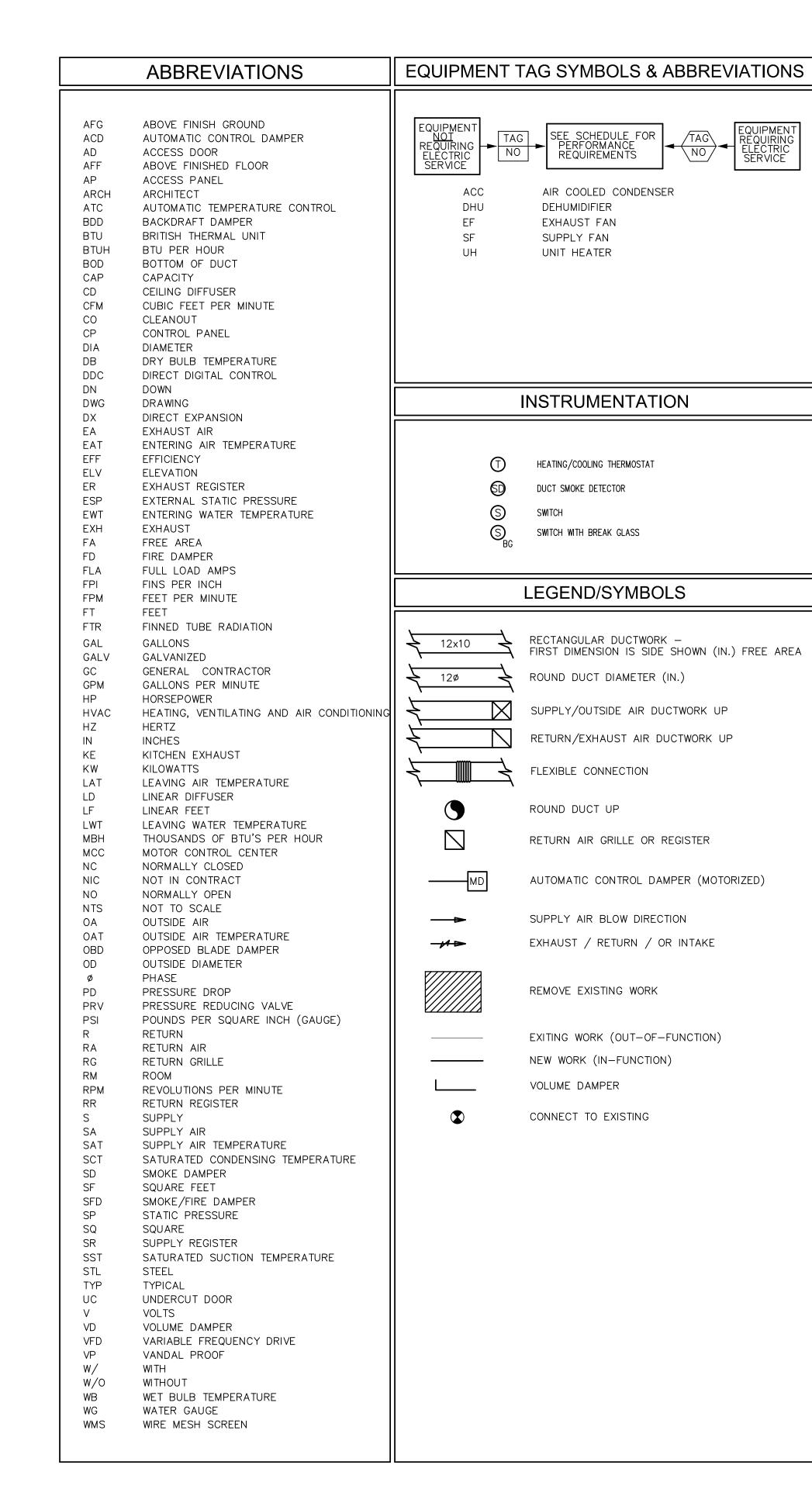


DESCRIPTION ABOVE FLOOR PIPING (INDICATED AS SINGLE LINEWORK) NEW WORK (INDICATED AS HEAVY LINEWORK) FIRE PROTECTION SERVICE MAIN WET SPRINKLER SYSTEM UP (PENETRATES LEVEL ABOVE) RISE (BUT DOES NOT PENETRATE LEVEL ABOVE) DOWN (PENETRATES LEVEL BELOW) DROP (BUT DOES NOT PNETRATE LEVEL BELOW) DIRECTION OF FLOW FIRE DEPARTMENT CONNECTION CHECK VALVE DRAIN VALVE WITH HOSE THREADS TAMPER SWITCH FLOW SWITCH PRESSURE SWITCH PRESSURE GAUGE NOT IN FIRE PROTECTION CONTRACT FIRE PROTECTION CONTRACTOR VALVE IN VERTICAL REDUCED PRESSURE BACKFLOW PREVENTER WET ALARM CHECK VALVE

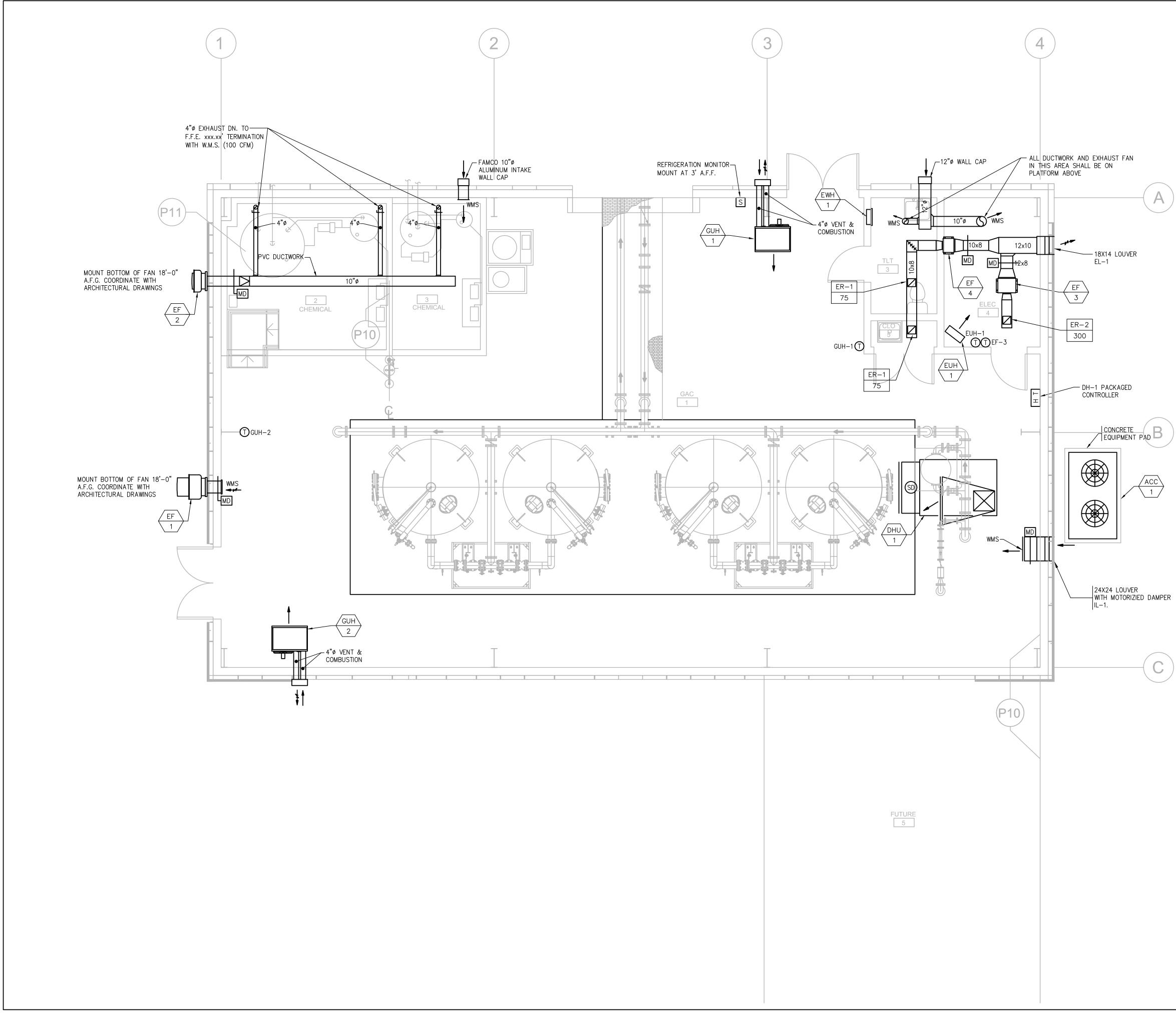
ISOLATION VALVE W/ TAMPER SWITCH CONCEALED SPRINKLER PENDENT SPRINKLER UPRIGHT SPRINKLER UPRIGHT SPRINKLER W/ PROTECTIVE GUARD


HYDRAULIC CALCULATION NODES





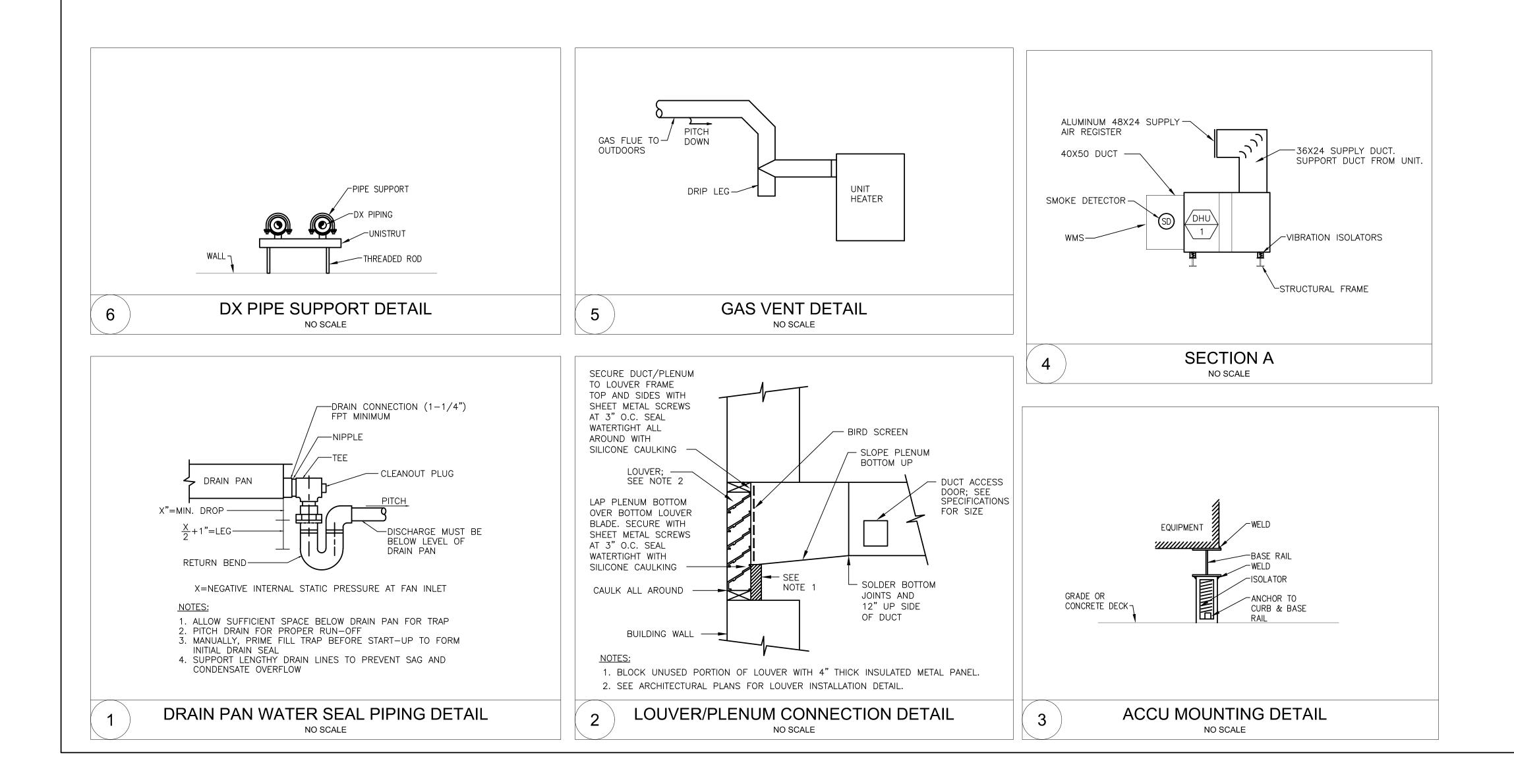
		NFEL ight People. Right	
	Signed By:	#	12345
	REV DESCRIP	DSN	СНК ДАТЕ
	REV DESCRIP	DWN	APP
- B			
		<i>S, INC.</i> Web: www.sar.com SCALE VE THIS BAR IS 1	Suite 309
-(C)		SHEET AD	INCH ON THIS JUST YOUR CORDINGLY
	ORIGINAL I	4' 4" = 1'-0'SCALE IN FEE ⁻ DRAWING SIZE IS 22 x	8' ∎ T
		PROTECTION	
		LIS, MASSACHU S WTP FINAL DE	
		THE AND	
	DEPARTMENT OF PUBL 900 MAIN	ST, MILLIS, MA 020	54
	PERMI PROJECT NO. 20233667	T REVIEW SE	I
NOT FOR CONSTRUCTION	ISSUE DATE SEPT. CURRENT REVISION DESIGNED BY DRAWN BY CHECKED BY		-101
	APPROVED BY	ABB SHEET	50 of 59



	GENERAL NOTES		SEQUENCE OF OPE
	 HVAC WORK IS INDICATED DIAGRAMMATICALLY. EXACT LOCATIONS OF ALL COMPONENTS ARE TO BE DETERMINED IN THE FIELD AND BY THE ACTUAL BUILDING CONDITIONS. DUCTS, PIPING OR EQUIPMENT INTERFERING WITH OTHER INSTALLATIONS SHALL BE RELOCATED AS REQUIRED AT NO ADDITIONAL COST TO THE OWNER. EXACT LOCATIONS MUST HAVE THE APPROVAL OF THE ARCHITECT. ALL WORK SHALL BE COORDINATED WITH ALL OTHER TRADES BEFORE ANY INSTALLATION IS MADE. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH STATE CODES, MANUFACTURER'S APPROVED PUBLISHED LITERATURE, AND AUTHORITIES HAVING JURISDICTION. INSTALLATION OF EQUIPMENT SHALL PERMIT ACCESSIBILITY FOR SERVICE AND/ REPAIR OR REPLACEMENT. ALL CEILING MOUNTED EQUIPMENT SHALL BE INSTALLED IN SUCH A WAY THAT LIGHTS, PIPING, AND DUCTWORK DO NOT BLOCK ACCESS TO UNITS AND RELATED ACCESSORIES. HVAC CONTRACTOR SHALL COORDINATE ALL WALL, CEILING, FLOOR, ROOF AND BEAM PENETRATIONS WITH ARCHITECT AND STRUCTURAL ENGINEER. ALL DUCT SIZES SHOWN ARE NET INSIDE CLEAR DIMENSIONS. PROVIDE INSTRUMENT TEST HOLES WITH CAPS IN AIR DISTRIBUTION SYSTEMS AS REQUIRED TO BALANCE SYSTEM. HVAC CONTRACTOR SHALL BE RESPONSIBLE FOR ALL SHEETMETAL TRANSITIONS AT FANS, COILS, AND OTHER SIMILAR HVAC EQUIPMENT. ALL MISCELLANEOUS SUPPORTS REQUIRED FOR HVAC EQUIPMENT INSTALLATION SHALL BE PROVIDED BY HVAC SUBCONTRACTOR. EXACT LOCATION OF THERMOSTAT TO BE COORDINATED WITH FINAL LOCATION OF WALL MOUNTED ARCHITECTURAL AND ELECTRICAL EQUIPMENT. EXACT LOCATION OF THERMOSTAT TO BE COORDINATED WITH FINAL LOCATION OF WALL MOUNTED ARCHITECTURAL AND ELECTRICAL COUPMENT. PROVIDE IDUCT CONNECTIONS ON INTAKES AND DISCHARGES OF ALL AIR HANDLING UNITS. COORDINATE DUCT MOUNTED SMOKE DETECTORS WITH HELECTRICAL CONTRACTOR. PROVIDE TLEUGTRICAL CONTRACTOR, INSTALLED BY THE HVAC CONTRACTOR. 	CONTROLLED a. IL-1 LOUVEF IL-1 DAMP 2. EF-1: a. WHEN THE F DAMPER SI DAMPER SI DAMPER SI FAN MOTO OPERATED b, WHEN DAMI DAMI FAN SHALL CAP WITH G IS MOVED TO SHALL CLOS SHALL CLOS NOTE " FAN 4. EF-3:	VER IL-1 SHALL HAVE A DIRECT CONNECTED AC) AS FOLLOWS: R SHALL OPEN WHEN EF-1 IS SWITCHED ON. WHE PER SHALL CLOSE. REFRIGERATION MONITOR ENTERS AN ALARM STAT HALL OPEN, THE DAN MOTOR SHALL START AND HALL OPEN, WHEN THE REFRIGERATION MONITOR R SHALL BE STOPPED AND THE FAN MOTOR OPE DAMPER SHALL CLOSE. N A MANUAL WALL SWITCH IS PLACED IN THE "C PER SHALL OPEN, THE FAN MOTOR SHALL START PER SHALL OPEN, THE FAN MOTOR SHALL START PER SHALL OPEN; UNLESS EF-2 BREAKGLASS SY SHALL NOT START AND THE FAN MOTOR OPERA LL REMAIN CLOSED. WHEN THE MANUAL WALL SW FAN MOTOR SHALL BE STOPPED AND THE FAN MOTOR OF CRAVITY DAMPER SHALL ALLOW MAKE-UP INTO TH O THE "OFF" POSITION. THE FAN SHALL BE STOP SE AND EF-1/IL-1 SHALL BE STOPPED AND THE SE UNLESS OVERRIDDEN BY THE REFRIGERATION M I EF-2 EMERGENCY STOP"
	14. ALL DUCT AND PIPE PENETRATIONS THROUGH WALLS AND FLOORS SHALL BE SEALED WITH FIRE-STOP PENETRATION SEAL IN ACCORDANCE WITH UL 1479.	THERMOSTA	ROOM EXHAUST FAN SHALL BE STARTED AND S T. ASSOCIATED MOTOR OPERATED DAMPER SHALL TE. A WALL CAP WITH GRAVITY DAMPER SHALL A HAUSTED.
	15. COORDINATE THE DIMENSIONS AND EXACT LOCATION OF THE SUSPENDED STRUCTURAL FRAME WITH THE SUPPORT REQUIREMENTS AND SERVICE ACCESS FOR DH-1.	SHALL ALLO 6. DHU-1 AND DEHUMIDIFIEI HUMIDITY SE TEMPERATUF CONTINUOUS SETPOINT OF CONDENSING VIA A DUCT BE SENT TO 7. EWH-1: ELECTRIC W/	R SHALL OPERATE BASED ON INTERGRAL CONTRO ENSORS WITHIN THE UNIT CABINET. THE SEQUENC RE OF 75°F DRY BULB AND 40% RELATIVE HUMID SLY MAINTAINED AT 50°F. UPON A RISE IN DRY B F 75°F (ADJ) THE UNIT SHALL SWITCH INTO COOL TO MAINTAIN DRY BULB SPACE TEMPERATURE S MOUNTED SMOKE DETECTOR, THE DH SYSTEM SI
- 1		1	

9. GUH-1 AND GUH-2:

ENCLUDE OF DATA OF A DECEMPTION OF THE AND THE ADDRESS OF THE		
CONTINUES OF A CONTINUE DE LA MARTE DE	SEQUENCE OF OPERATION	
9-PHR10-WHE FOUL COST ADA A REVIEW CONTROL COST ADA A REVIEW COST ADA A REVIEW COST	INTAKE LOUVER IL-1 SHALL HAVE A DIRECT CONNECTED ACTUATOR. ACTUATOR SHALL BE CONTROLLED AS FOLLOWS: IL-1 LOUVER SHALL OPEN WHEN EF-1 IS SWITCHED ON. WHEN EF-1 IS SWITCHED OF, THE IL-1 DAMPER SHALL CLOSE. EF-1: WHEN THE REFRIGERATION MONITOR ENTERS AN ALARM STATE, THE FAN MOTOR OPERATED DAMPER SHALL OPEN, THE DAN MOTOR SHALL START AND RUN AND IL-1 MOTOR OPERATED DAMPER SHALL OPEN. WHEN THE REFRIGERATION MONITOR LEAVES THE ALARM STATE. THE	
Bit Dep Set 1 one in the set of the	OPERATED DAMPER SHALL CLOSE.	Signed By: # 12345
Marked Sector 1000 1000 2010 2010 2010 2010 2010 201	DAMPER SHALL OPEN, THE FAN MOTOR SHALL START AND RUN AND IL-1 MOTOR OPERATED DAMPER SHALL OPEN; UNLESS EF-2 BREAKGLASS SWITCH IS ACTIVATED, IN WHICH CASE THE FAN SHALL NOT START AND THE FAN MOTOR OPERATED AND IL-1 MOTOR OPERATED DAMPER SHALL REMAIN CLOSED. WHEN THE MANUAL WALL SWITCH IS PLACED IN THE "OFF" POSITION. THE FAN MOTOR SHALL BE STOPPED AND THE FAN MOTOR OPERATED DAMPER AND IL-1 MOTOR OPERATED DAMPER SHALL CLOSE.	
Internet to Observation of the Statute of the Stat	FAN SHALL RUN CONTINUOUSLY AND ASSOCIATED MOTOR OPERATED DAMPER SHALL BE OPEN. WALL CAP WITH GRAVITY DAMPER SHALL ALLOW MAKE-UP INTO THE SPACE. WHEN A BREAK GLASS SWITCH IS MOVED TO THE "OFF" POSITION. THE FAN SHALL BE STOPPED. THE MOTOR OPERATED DAMPER SHALL CLOSE AND $EF-1/IL-1$ SHALL BE STOPPED AND THE ASSOCIATED MOTOR OPERATED DAMPER SHALL CLOSE UNLESS OVERRIDDEN BY THE REFRIGERATION MONITOR. SIGNAGE AT FAN $EF-2$ SHALL NOTE "FAN $EF-2$ EMERGENCY STOP"	
BMLAL ALLOW AND NO THE DOUT TO MAKE JET THE AND EXCHANGED AND TARGETABLE BMLAL ALLOW AND TO THE COND TO MAKE JET THE AND EXCHANGES AND TARGETABLE BMLAT ADDRESS AND AND THE DOUT TO MAKE JET THE AND EXCHANGES AND TARGETABLE AND A SEAL BEAM OF THE DOUT TO MAKE JET THE AND EXCHANGES AND TARGETABLE COST IN THE DOUT TO MAKE JET THE AND EXCHANGES AND TARGETABLE COST IN THE DOUT TO MAKE JET THE AND EXCHANGES AND A SEAL BEAM OF THE TOTAL TO SAN THE THE DOUT TO MAKE JET THE AND EXCHANGES AND A SEAL BEAM OF THE TOTAL TO SAN THE THE DOUT TO MAKE JET THE AND EXCHANGES AND TARGETABLE COST IN THE DOUT TO MAKE JET THE AND EXCHANGES AND A SEAL BEAM OF THE TERMESTATE TO MAKE JET THE TOTAL TO SANCE JET TO THE DOUT TO MAKE JET THE TOTAL TO SANCE JET TO THE AND EXCHANGES AND A SEAL BEAM OF THE TERMESTATE TO MAKE JET THE TOTAL TO SANCE JET TO THE AND EXCHANGES AND A SEAL THE THE TOTAL TO SANCE JET TO THE AND EXCHANGES AND A SEAL THE TOTAL TO AND THE THE TERMESTATE TO MAKE JET THE TO THE DOUT TO AND THE THE TERMESTATE TO MAKE JET THE TO AND THE THE TERMESTATE TO MAKE JET THE TO AND THE THE TERMESTATE TO MAKE JET THE TO AND THE TERMESTATE TO MAKE JET THE TERMESTATE TO MAKE JET THE TO AND THE TERMESTATE TO MAKE JET TO AND THE THE TERMESTATE TO MAKE JET THE TO AND THE TERMESTATE TO MAKE JET TO AND THE TERMESTATE TO MAKE JET TO AND THE TERMESTATE TO MAKE JET TO AND THE TERMESTATE TO AND THE TERMESTATE TO AND THE TERMESTATE TO MAKE JET THE TO AND THE TERMESTATE T	ELECTRICAL ROOM EXHAUST FAN SHALL BE STARTED AND STOPPED BY A WALL MOUNTED THERMOSTAT. ASSOCIATED MOTOR OPERATED DAMPER SHALL CYCLE OPEN AND CLOSED AS APPROPRIATE. A WALL CAP WITH GRAVITY DAMPER SHALL ALLOW AIR INTO THE ROOM TO MAKE-UP THE AIR EXHAUSTED.	
LINGTO STORES UTHENTICATE CARACT, THE STUDY ASS SHUT WARKING A STATE DETERMINED TO STORE STATE AND A REPORT AND USED IN THE DEVELOPMENT OF THE PROTE DETERMINED TO STATE AND AND A REPORT AND A REPORT OF STATE OF PROTE DETERMINED TO STATE STATE AND AND AND A REPORT AND A REPORT HE REPORT OF STATE AND AND A DEVELOPE AND A REPORT AND AND AND A STATE HE REPORT OF STATE AND A REPORT AND A DEVELOPE AND A DEVELOPE AND A STATE HE REPORT AND A DEVELOPE AND A REPORT AND A DEVELOPE AND A STATE STATE HE REPORT AND A DEVELOPE AND A REPORT AND A DEVELOPE AND A STATE STATE HE REPORT AND A DEVELOPE AND A REPORT AND A DEVELOPE AND A STATE STATE HE REPORT AND A DEVELOPE AND A REPORT AND A DEVELOPE AND A STATE STATE HE REPORT AND A DEVELOPE AND A REPORT AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPE AND A REPORT AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPE AND A REPORT AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPE AND A REPORT AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPE AND A STATE STATE AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPE AND A STATE AND A STATE STATE AND A STATE STATE HE REPORT AND A DEVELOPE AND A STATE AND A STATE STATE AND A STATE HE REPORT AND A DEVELOPMENT AND A STATE STATE AND A STATE STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE HE REPORT AND A STATE AND	SHALL ALLOW AIR INTO THE ROOM TO MAKE-UP THE AIR EXHAUSTED. DHU-1 AND ACC-1:	
TUCING WALL HEATER STALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TURNERATIVE SERVICES STRUCT. UNITY HATER STALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TRUPEATURE SERVICE. CURI-1 MOD GR-2. UNIT HATERS SHALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TRUPEATURE STRUCT. CURI-1 MOD GR-2. UNIT HATERS SHALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TRUPEATURE STRUCT. CURI-1 MOD GR-2. UNIT HATERS SHALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TRUPEATURE STRUCT. CURI-1 MOD GR-2. UNIT HATERS SHALL BY CYCLE FROM THE THERMOSTAT TO MANTAN SPACE TRUPEATURE UNIT HATERS SHALL BY CYCLE FROM THE TRUPE TRUPE OF STAGE AS DETERMINED BY A WALL MOINTED SPACE TRUPEATURE STRUCT. DOTGINAL DRAWING SIZE IS 22 + 31 HYAC LEGEND AND GENERAL NOTES TOWN OF MILLIS. MAS ACHUSETTS VELLS OFFICIAL NOTES TOWN OF MILLIS. MAS ACHUSETTS VELLS OFFICIAL NOTES TOWN OF MILLIS. DOTGINAL DRAWING SIZE IS 22 + 31 HYAC LEGEND AND GENERAL NOTES TOWN OF MILLIS. DOTGINAL DRAWING SIZE IS 22 + 31 HYAC LEGEND AND GENERAL NOTES TOWN OF MILLIS. DOTGINAL DRAWING SIZE IS 22 + 31 HYAC LEGEND AND GENERAL NOTES TOWN OF MILLIS. DOTGINAL DRAWING SIZE IS 22 + 31 HYAC LEGEND AND GENERAL NOTES TOWN OF MILLIS. MAS ACHUSETTS WELL 3 PFAS WTP FINAL DESIGN FORMATION MANTAN NOT FOR NOT FOR NOT FOR NOT FOR THE ONLINE ON THE ONLY OF THE	HUMIDITY SENSORS WITHIN THE UNIT CABINET. THE SEQUENCES SHALL MAINTAIN A SPACE TEMPERATURE OF 75°F DRY BULB AND 40% RELATIVE HUMIDITY. DEW POINT TEMPERATURE SHALL BE CONTINUOUSLY MAINTAINED AT 50°F. UPON A RISE IN DRY BULB SPACE TEMPERATURE OVER THE SETPOINT OF 75°F (ADJ) THE UNIT SHALL SWITCH INTO COOLING MODE AND ENERGIZE THE REMOTE CONDENSING TO MAINTAIN DRY BULB SPACE TEMPERATURE SETPOINT. UPON DETECTION OF SMOKE VIA A DUCT MOUNTED SMOKE DETECTOR, THE DH SYSTEM SHALL DEENERGIZE AND A SIGNAL SHALL BE SENT TO THE FACP.	
SETORIT. GUI-1 AND CUI-2: UNIT HATES SHALL INCLUDE THE CARABULY TO RUN THE UNIT FAR FOR SUMMER VENTUATION WITH NO HEATE. HEATE. SHALL INCLUDE THE CARABULY TO RUN THE UNIT FAR FOR SUMMER VENTUATION WITH NO HEAT. SCALE VERTIFICATION UNIT HATES SHALL INCLUDE THE CARABULY TO RUN THE UNIT FAR FOR SUMMER VENTUATION WITH NO HEAT. ORIGINAL DRAWING SIZE IS 22 × 34 HVAC LEGEND AND GENERAL NOTES TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN H-001 H-001	ELECTRIC WALL HEATER SHALL BY CYCLE FROM AN INTEGRAL THERMOSTAT TO MAINTAIN SPACE TEMPERATURE SETPOINT. EUH-1:	150 Grossman Drive, Suite 309 Braintree, Massachusetts 02184 617 221-9220
In the same shall FRE ON LOW STACE OR HIGH STAGE AS DETERMINED BY A WALL MOUNTED SPACE THEMOSTAT TO MAINTAIN A SPACE TOMPERATURE SEPTONT OF 6ST (2.3.3 THE UNIT HEATERS SHALL INCLUE THE CAPABILITY TO RUN THE UNIT FAM FOR SUMMER VEHILATION WITH NO HEAT. ORIGINAL DRAWING SIZE IS 22 × 34 HVAC LEGEND AND GENERAL NOTES TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DUNSION SOLMEST ACCOUNTS AND AD 2054 PERMIT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION, 2023087.000A ISSUE DATE SEPT. 2023 CURRENT REVIEW SET PROJECTION RUNNENT REVIEW ISSUE DATE SEPT. 2023 CURRENT REVIEW ISSUE DATE SEPT. 2023 CU	SETPOINT.	
HVAC LEGEND AND GENERAL NOTES TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN IOWN OF MILLIS WELL 3 PFAS WTP FINAL DESIGN IOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PROJECT NO. 20233867.002A SEE DATE SEPT. 2023 CURRENT REVIEW SET PROJECT NO. 20233867.002A ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY DESIGNED BY NOT FOR CONSTRUCTION	UNIT HEATERS SHALL FIRE ON LOW STAGE OR HIGH STAGE AS DETERMINED BY A WALL MOUNTED SPACE THERMOSTAT TO MAINTAIN A SPACE TEMPERATURE SETPOINT OF 65°F (ADJ) THE UNIT HEATERS SHALL INCLUDE THE CAPABILITY TO RUN THE UNIT FAN FOR SUMMER VENTILATION WITH NO	THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" LJ IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR
LEGEND AND GENERAL NOTES TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT.2023 URRENT REVISION DESIGNED BY RLB DRAWN BY RLB		ORIGINAL DRAWING SIZE IS 22 x 34
WELL 3 PFAS WTP FINAL DESIGN TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION POUS MAIN ST, MILLIS, MA 02054 PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY RLB DRAWN BY		
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY RLB DRAWN BY RLB		
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054 PERMIT REVIEW SET PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY RLB DRAWN BY RLB		ORNED FY CAR
NOT FOR CONSTRUCTIONPROJECT NO. 20233667.002AISSUE DATESEPT. 2023CURRENT REVISION-DESIGNED BYRLBDRAWN BYRLB		DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
NOT FOR CONSTRUCTIONISSUE DATESEPT. 2023CURRENT REVISION-DESIGNED BYRLBDRAWN BYRLB		
CHECKED BY RHB		ISSUE DATE SEPT. 2023 CURRENT REVISION - DESIGNED BY RLB DRAWN BY RLB CHECKED BY RHB


]
	KLEINFELDE Bright People. Right Solu	
	Signed By: # 12345	
	REV DESCRIPTION DSN CHK	DATE
	DWN APP	DATE
	Solution Basin tree, Massachusetts 02184 CHARGINEERING, INC. Mechanical/Electrical Engineers 150 Grossman Drive, Suite 309 Braintree, Massachusetts 02184 617 221-9220 web: www.sar.com	
	SCALE VERIFIC	
R	THIS BAR IS 1 INCH IN ON ORIGINAL DRA	N LENGTH
		1"
	IF IT'S NOT 1 INCH O SHEET ADJUST Y SCALES ACCORD	OUR
	0 4' 8'	
	SCALE: 1/4" = 1'-0'SCALE IN FEET	
	ORIGINAL DRAWING SIZE IS 22 x 34 HVAC FLOOR PLAN	
	TOWN OF MILLIS, MASSACHUSET	тs
	WELL 3 PFAS WTP FINAL DESIGN	N
	GRORATED FEE	
	THE MASS	
	TOWN OF MILLIS	
	DEPARTMENT OF PUBLIC WORKS ENGINEERING 900 MAIN ST, MILLIS, MA 02054	DIVISION
	PERMIT REVIEW SET PROJECT NO. 20233667.002A	
	ISSUE DATE SEPT. 2023	
NOT FOR CONSTRUCTION	DESIGNED BY RLB DRAWN BY RLB	
	CHECKED BYRHBAPPROVED BYABBSHEET53	3 of 59

							DEHL	JMIDIFIE	R SCH	EDULE	Ē				
TAG	MANUFACTURER					T (DE	MOISTUR		TOTAL	AIRFLOW		ELEC	TRICAL I	DATA	
NO.	MODEL NO. OR EC	QUAL	ARI	ea serve	-D	TYPE	REMOVAL (LBS/HR		COOLING (MBH)	(CFM)	MCA	MAX FUSE	VOLT	PHASE	REMARKS
DHU-1	DESERT AIRE LW-	10	FIL	TER ROC	M	CEILING	18.6	80.10	100	6,900	26	40	480	3	1
								ER SCHE							
				AIR			HEATE								
TAG NO.	LOCATION	CFM	HP		EAT (°F)		HEATE	ER SCHE	DULE	_ DATA	IAM	NUFACTU DEL NUM			REMARKS
TAG	LOCATION FILTER ROOM		HP	AIR	EAT	UNIT	HEATE MOUNT HEIGHT (FT.)	ER SCHE	ELECTRICA	_ DATA	IAM		BER	00	

1 PROVIDE TWO STAGE GAS VALVE WITH INTERMITTENT PILOT CONTROL, 100% SHUTOFF WITH CONTINUOUS RETRY. PROVIDE NATURAL GAS TO PROPANE GAS CONVERSION KIT.

3 PROVIDE WITH SIDEWALL TERMINATION KIT

EUH		ELEC	TRI	C HE	EATE	ER S	CHEDULE	
TAO		CAPACITY	F,	AN DAT	ΓA	1		
TAG NO.	LOCATION	KW	CFM	V	PH	HZ	MANUFACTURER MODEL NUMBER	REMARKS
EUH-1	ELECTRIC ROOM	3.0	350	480	3	60	QMARK MUH0341	
EWH-1	BATHROOM	1.5	_	120	1	60	QMARK CWH1151DSF	

R	EMOTE	DEN	SER SCHEDULE

TAG	MANUFACTURER	REFRIG	AMBIENT	FANS		ELECTRICA	l data		REMARKS
NO.	OR EQUAL	TYPE	(°F)	QTY	MCA	MOPD	VOLTS	PHASE	REMARKS
ACC-1	DESERT AIRE RC5S079	R-407C	95	3	_	15	480	3	

EF				F	AN S	SCHE	DUL	.E				
					SPEED) (RPM)	EL	ECTRIC	AL DA	TA		
TAG NO.	SERVICE	FAN TYPE	CFM	ESP (IN WC)	FAN	MOTOR	HP	V	PH	НZ	MANUFACTURER & MODEL NUMBER	REMARKS
EF-1	PFAS AREA	WALL MOUNTED DOME	1400	0.50	1411	1725	1/2	120	1	60	GREENHECK CUE-120-VG	023
EF-2	CHEMICAL AREA	WALL MOUNTED DOME	300	0.50	1662	1725	1/10	120	1	60	GREENHECK CUE-80-VG	003
EF-3	ELECTRICAL ROOM	INLINE CABINET	500	0.50	1411	1725	1/2	120	1	60	GREENHECK CSP-A510-VG	003
EF-4	BATHROOM/JANITOR	INLINE CABINET	150	0.50	1221	1350	32W	120	1	60	GREENHECK CSP-A360-VG	123

 PROVIDE THERMAL OVERLOAD MOTOR AND STAINLESS STEEL BIRDSCREEN.
 PROVIDE MOTOR COVER/BELT GUARD, TEFC FAN MOTOR, INLET FLEX DUCT CONNECTION, AND OUTLET WIRE MESH SCREEN. 3 ECM MOTOR

S							
	igned By: .				#	¢ 12345	
REV		DESCR	IPTION		DSN DWN	CHK APP	DAT
				THIS B	_E VE AR IS 1 ORIGIN	INCH I	N LEN
				IF IT'S			1" ON TH
					IEET AI ALES A		
		RIGINAL					
	C			ING SIZE	IS 22 x	34	
		CHED	H١	ING SIZE /AC AND E			
	S TOWN	OF M	H\ ULES	/AC AND [DETA	I LS JSET	
	S TOWN	OF M	H\ ULES	AC AND C MASS	DETA	I LS JSET	
DEPAI	S TOWN WEL	I OF M L 3 PF		AND E MASS TP FIN		ILS JSET ESIGI	N
DEPAI	SO TOWN WEL	I OF M L 3 PF	H ULES IILLIS, AS W	AC AND C MASS TP FIN	ACHI	ILS JSET ESIGI	N
	SO TOWN WEL			AC AND E MASS TP FIN	ACHI	ILS JSET ESIGI	N
PRO	TOWN WEL	I OF M L 3 PF	H ULES IILLIS, AS W AS W OWN O BLIC WO N ST, N IIT R	AC AND E MASS TP FIN	ACHI	ILS JSET ESIGI	N
PRO. ISSU CURI	TOWN WEL WEL RTMENT 90 F JECT NO. E DATE RENT REV	I OF M L 3 PF	HULES IILLIS, AS W OWN C BLIC WO ST, N IIT R 57.002A T. 2023	AC AND E MASS TP FIN	ACHI	ILS JSET ESIGI	DIVIS
PRO. ISSU CURI DESI	TOWN WEL	I OF M L 3 PF	H ULES IILLIS, AS W AS W OWN O BLIC WO N ST, N IIT R	AC AND E MASS TP FIN	ACHI	ILS JSET ESIGI ERING 054	DIVIS

ABB SHEET

APPROVED BY

54 of 59

NOT FOR

CONSTRUCTION

PLUMBING NOTES:

<u>CFH</u>	AMOUT_OF RELIEF_VENTS REQUIRED
UNDER 1,000 CFH	1
000 CFH TO 2,500 CFH	3
500 CFH TO 12,500 CFH	3
OVER 12,500 CFH	4

			PL	UMBING NOTES:		PLUMBING	<u>G LEGEND</u>
			CO	E WORK COVERED CONSISTS OF FURNISHING ALL LABOR AND MATERIALS NECESSARY TO INSTALL, MPLETE AND READY FOR CONTINUOUS OPERATION, THE PLUMBING SYSTEMS, APPARATUS D EQUIPMENT FOR THIS PROJECT.	SYMBOL	ABBREVIATION	DESCRIPTION
			PEF GAS	. EQUIPMENT AND MATERIALS FURNISHED UNDER THE PLUMBING SUB-CONTRACT, LABOR AND TESTING RFORMED HEREIN SHALL BE IN COMPLETE ACCORDANCE WITH THE STATE BUILDING CODE, LOCAL FUEL S AND PLUMBING CODES, ALL LOCAL CODES AND REGULATIONS, NATIONAL FIRE PROTECTION ASSOCIATION, URANCE REGULATIONS AND REQUIREMENTS GOVERNING SUCH WORK.			ABOVE FLOOR PIPING BELOW FLOOR PIPING NEW WORK (INDICATE
			3. AN`	Y AND ALL PERMITS REQUIRED FOR INSTALLATION OF ANY MATERIAL SHALL BE OBTAINED AS PART OF WORK OF THE SPECIFICATION INCLUDING ALL FEES OR EXPENSES INCURED.			COLD WATER HOT WATER HOT WATER RECIRCUI
			BE	ERE WATER PIPING IS SHOWN DROPPING INTO PLUMBING CHASES WITH SIZES NOTED, THAT SIZE SHALL BE CARRIED FULL LENGTH THROUGH THE CHASE. REFER TO PLUMBING FIXTURE SCHEDULE ON THIS AWING FOR INDIVIDUAL FIXTURE CONNECTION SIZES.	TW		TEMPERED WATER SANITARY DRAINAGE (FLUE EXHAUST
			PIT	LESS OTHERWISE NOTED, ALL HORIZONTAL DRAINAGE PIPING WHICH IS 3" OR LESS IN DIAMETER SHALL CH OF NOT LESS THAN 1/4" PER FOOT AND ALL HORIZONTAL DRAINAGE PIPING WHICH IS 4" OR LARGER DIAMETER SHALL PITCH OF NOT LESS THAN 1/8" PER FOOT.	——————————————————————————————————————	FLUE G UP	GAS (LIQUID PROPAN UP (PENETRATES LEV
			FOF	. BELOW FLOOR PIPING THAT INTERSECTS A GRADE BEAM REQUIRES COORDINATION WITH STRUCTURAL. R STRUCTURAL DETAILS, REFER TO STRUCTURAL DRAWINGS. DVIDE ALL FLOOR CLEANOUTS WITH HUB AND SPIGOT; LEAD AND OAKUM JOINTS FROM CLEANOUT TO		DN DP	RISE (BUT DOES NOT DOWN (PENETRATES DROP (BUT DOES NO
			AN	TIDE ALL FLOOR CLEANOUTS WITH HOB AND SPIGUT, LEAD AND OAROM JOINTS FROM CLEANOUT TO D INCLUDING CONNECTION TO SANITARY OR STORM DRAIN. TER TO ARCHITECTURAL PLANS FOR EXACT LOCATION OF ALL PLUMBING FIXTURES AND EQUIPMENT.	<u> </u>		DIRECTION OF FLOW DIRECTION & DESIGN
			SH/ FIT	_ BURIED DOMESTIC WATER PIPING, TEMPERED WATER PIPING OR AIR PIPING ALL BE SOFT ROLLED "K" COPPER COIL AND BE PROTECTED WITH A HIGH DENSITY RUBBER INSULATION. TINGS SHALL NOT BE PERMITTED IN OR UNDER SLAB. DVIDE SLAB PENETRATIONS WITH SLEEVE AND FIRE STOPPING.	 	BVA CV	SHUTOFF VALVE BALANCING VALVE AS CHECK VALVE
			10. INT WIT	ERIOR PLUMBING AND HVAC EQUIPMENT REQUIRING A LP GAS CONNECTION SHALL BE PROVIDED H AN EMERGENCY GAS RELIEF VENT AT EACH GAS TRAIN IN ACCORDANCE WITH THE MASSACHUSETTS EL GAS CODE AND AS INDICATED WITH THE FOLLOWING CHART:	Ki	PRV	PRESSURE REDUCING DRAIN VALVE WITH H
				AMOUT OFSIZE OF EACH RELIEF VENTCFHRELIEF VENTSREQUIRED0' TO 40'0' TO 40'0' TO 200'	—————————————————————————————————————	PG SA	GAS SHUTOFF VALVE PRESSURE GAUGE SHOCK ABSORBER
				UNDER 1,000 CFH13/4"1"1 1/4",000 CFH TO 2,500 CFH33/4"1"1 1/4",500 CFH TO 12,500 CFH33/4"1"1 1/4"OVER 12,500 CFH43/4"1"1 1/4"		CO WCO FCO FD	CLEANOUT WALL CLEANOUT FLOOR CLEANOUT FLOOR DRAIN
				CELLANEOUS DISCREPANCIES OR OMMISSIONS WHICH MIGHT APPEAR ON THE PLANS OR SPECIFICATIONS L NOT RELIEVE THE PLUMBING SUB-CONTRACTOR OF CODE COMPLIANCE.	-+ -+	HB WH NIPC	HOSE BIBB WALL HYDRANT
			THI TO	. FLOOR DRAINS SHALL BE PROVIDED WITH A TRAP PRIMER CONNECTION. S CONTRACTOR SHALL PROVIDE ALL ASSOCIATED EQUIPMENT NECESSARY PROVIDE A COMPLETE SYSTEM INCLUDING AN ELECTRONICALLY OPERATED PRIMING MANIFOLD AND ALL SOCIATED PIPING REQUIRED.		PC NO	NOT IN PLUMBING CO PLUMBING CONTRACTO NORMALLY OPEN
			13. GA MA CO	S FIRED EQUIPMENT - PROVIDE FULL SIZE SOV AND DRIP LEG IN ACCESSIBLE LOCATION. KE FINAL CONNECTION TO EQUIPMENT WITH NECESSARY REDUCER AND UNION NNECTION. PC TO COORDINATE EXACT CONNECTION SIZE, LOAD, LOCATION, AND UIPMENT ACCESS NEEDS PRIOR TO GAS INSTALLATION.	∞	NC INV CFH W&T	NORMALLY CLOSED INVERT ELEVATION CUBIC FEET PER HOI WASTE & TRAP
Ρ	LUM	1BIN	G F	IXTURE SCHEDULE	∞+ ∞	VIV OED	VALVE IN VERTICAL OPEN END DRAIN
CONI HW	NECTION TW	SIZE S/W	V	REMARKS	J	VTR CC	VENT THRU ROOF CAPPED CONNECTION
	1-1/4"	-		GUARDIAN G1950 – SEE NOTE 1 – SEE NOTE 7		UN UN ST	UNION STRAINER
_	_	4"	2"	SEE SPECIFICATION		WTS	WATER TIGHT SLEEVE
1/2"	_	2"	2"	SEE SPECIFICATION	0	<u>P–</u> WM	PLUMBING FIXTURE D WATER METER
3/4"		2 3"			N OR	RPBP	REDUCED PRESSURE
-	-	3	2"	SEE SPECIFICATION		TWH FFE	TANKLESS WATER HE
-	1-1/4"	-	-	LAWLER MODEL 911E - SEE NOTE 3		LPC	LIMIT PLUMBING CON
-	-	-	-	INTEGRAL VACUUM BREAKER W/ VANDAL RESISTANT "T" HANDLE KEY - SEE NOTE 2		TDL	TOTAL DEVELOPED LE
-	-	-	_	NON-FREEZE, QUARTER TURN, INTEGRAL VACUUM BREAKER W/ VANDAL RESISTANT "T" HANDLE KEY - SEE NOTE 2			EMERGENCY SHOWER
-	-	2"	2"	SEE SPECIFICATION. PROVIDE WITH TRAP PRIMER.			

						PL	UMBING I	NOI	ES:								PL	UMBINC	<u> S LEGEN</u>
						CO	E WORK COVERED CONS MPLETE AND READY I D EQUIPMENT FOR THIS	FOR CONT	TINUOUS OPERA							SYMBOL		ABBREVIATION	DESCRIPTION
						PER GAS	EQUIPMENT AND MATER FORMED HEREIN SHALL AND PLUMBING CODES, URANCE REGULATIONS /	BE IN COM ALL LOCAL	MPLETE ACCORDAN _ CODES AND REGU	NCE WITH 1 ULATIONS, 1	THE STATE B NATIONAL FIR	BUILDING CO	DE, LOCAI	L FUEL					ABOVE FLOOR PIF BELOW FLOOR PIF NEW WORK (INDIC
						3. AN)	Y AND ALL PERMITS REQ WORK OF THE SPECIFI	UIRED FOR	R INSTALLATION OF	F ANY MAT	ERIAL SHALL		NED AS PA	ART OF				CW HW	COLD WATER HOT WATER
							ERE WATER PIPING IS SH BE CARRIED FULL LENG									Tw		HWR TW	HOT WATER RECIF TEMPERED WATER
						DRA	AWING FOR INDIVIDUAL F	FIXTURE CO	ONNECTION SIZES.).								S/W FLUE	SANITARY DRAINAG
						PIT(CH OF NOT LESS THAN 1 DIAMETER SHALL PITCH	1/4" PER F(OOT AND ALL HOR	RIZONTAL D	RAINAGE PIP					G		G UP	GAS (LIQUID PRO UP (PENETRATES
						FOF	. BELOW FLOOR PIPING T R STRUCTURAL DETAILS,	, REFER TO	O STRUCTURAL DE	RAWINGS.								DN	RISE (BUT DOES DOWN (PENETRAT
						AN	OVIDE ALL FLOOR CLEAN D INCLUDING CONNECTIC	ON TO SAN	NITARY OR STORM	DRAIN.							1	DP	DROP (BUT DOES DIRECTION OF FL DIRECTION & DES
							ER TO ARCHITECTURAL							PMENT.		F			SHUTOFF VALVE
						SHA	_ BURIED DOMESTIC V ALL BE SOFT ROLLED "K"	'COPPER C	COIL AND BE PROT	TECTED WIT				LATION.				BVA	BALANCING VALVE
							TINGS SHALL NOT BE PI DVIDE SLAB PENETRATIC				×.							CV	CHECK VALVE
						WITI	ERIOR PLUMBING AND I H AN EMERGENCY GAS F EL GAS CODE AND AS I	RELIEF VEN	NT AT EACH GAS	TRAIN IN A	CCORDANCE							PRV DV	PRESSURE REDUC
									AMOUT OF		<u>SIZE OF</u>	EACH RELI	<u>EF VENT</u>			+ Ø		PG	GAS SHUTOFF VA
							<u>CFH</u>		<u>LIEF VENTS</u> REQUIRED	<u>0'</u>	TO 40'	<u>0' TO 100'</u>	<u>0' TO</u>	200'		т Q		SA	SHOCK ABSORBER
						4	UNDER 1,000 CFH	11	1		3/4"	1"	1 1,	/4" /4"		<u> </u>		СО	CLEANOUT
							,000 CFH TO 2,500 CFI ,500 CFH TO 12,500 CF		3		3/4" 3/4" 3/4"	1 1" 1"	1 1, 1 1, 1 1, 1 1,	/4"				WCO FCO	WALL CLEANOUT FLOOR CLEANOUT
							OVER 12,500 CFH		4		3/4	1	1 1,	/4		() 0		FCO	FLOOR DRAIN
																-+		HB	HOSE BIBB
							CELLANEOUS DISCREPAN(L NOT RELIEVE THE PLU						SPECIFIC	CATIONS		-+		WH	WALL HYDRANT
							FLOOR DRAINS SHALL											NIPC PC	NOT IN PLUMBING PLUMBING CONTR
						TO	S CONTRACTOR SHALL I PROVIDE A COMPLETE S SOCIATED PIPING REQUIF	SYSTEM INCL					NIFOLD AN	ND ALL				NO NC	NORMALLY OPEN NORMALLY CLOSE
						MA	S FIRED EQUIPMENT - KE FINAL CONNECTION	N TO EQU	UIPMENT WITH N	VECESSAR	Y REDUCER	r and Uni	ON	ATION.				INV CFH	INVERT ELEVATION CUBIC FEET PER
							NNECTION. PC TO CO UIPMENT ACCESS NEE					LUCA HUN,	ANU			α_		W&T	WASTE & TRAP
										•						—— —∞	F	VIV OED	VALVE IN VERTICA OPEN END DRAIN
			P				IXTURE S			• 						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		VTR	VENT THRU ROOF
DESIGNATION	FIXTURE DESCRIPTION	CW	CON HW	INECTION TW	SIZE S/W	V	REMARKS] 		CC	
ES-1	EMERGENCY SHOWER/EYEWASH	-	-	1-1/4"	-	-	GUARDIAN G1950 –	SEE NOT	TE 1 – SEE N(OTE 7								UN ST	UNION STRAINER
WC-1	WATER CLOSET - FLOOR MTD.	1"	-	-	4"	2"	SEE SPECIFICATION											WTS <u>P-</u>	WATER TIGHT SLE PLUMBING FIXTUR
LAV-1	LAVATORY	1/2"	1/2"	-	2"	2"	SEE SPECIFICATION									0		WM	WATER METER
JS-1	JANITOR SINK	3/4"	3/4"	-	3"	2"	SEE SPECIFICATION									M OR		RPBP TWH	REDUCED PRESSU
TMV	THERMOSTATIC MIXING VALVE	-	-	1-1/4"	-	-	LAWLER MODEL 911E	E - SEE N	NOTE 3									FFE LPC	FINISHED FLOOR LIMIT PLUMBING (
НВ	HOSE BIBB	1/2"	-	-	-	-	INTEGRAL VACUUM E	BREAKER	W/ VANDAL RE	ESISTANT	"T" HANDLE	E KEY - S	SEE NOTE	E 2			`	TDL	TOTAL DEVELOPED
WH	WALL HYDRANT	1/2"	-	-	-	-	NON-FREEZE, QUARI	TER TURN	, INTEGRAL VA(CUUM BRE	EAKER W/	VANDAL R	RESISTAN	IT "T" HANDLE KEY - SEE NOT	TE 2	€ ; (€			EMERGENCY SHOW
FD	FLOOR DRAIN	-	-	-	2"	2"	SEE SPECIFICATION.	PROVIDE	WITH TRAP PRI	IMER.									
L	I	1	1	1	1	I													

NOTES:

1. PROVIDE FLOW SWITCH WITH SINGLE POLE, DOUBLE THROW CONTACTS, AND 20 GPM BALANCING REGULATOR (G6040).

2. MOUNT FIXTURE 4-0" AFF 3. PROVIDE DIAL THERMOMETER ON INLETS.

5. ALL EXPOSED VALVES, PIPING AND FITTINGS SHALL BE CHROME PLATED. 6. PLUMBING CONTRACTOR SHALL PROVIDE EACH CONNECTION TO EACH SINK OR PIECE OF EQUIPMENT WITH ITS OWN INDIVIDUAL SHUTOFF VALVE 7. PROVIDE 90° ELBOW FOR EYEWASH DRAIN OUTLET TO DRAIN DIRECT ON FLOOR.

	GAS	FIRED	TANKLESS	S WA	TER H	EATER S
TAG NO.	MANUFACTURER AND MODEL NO.	MAX INPUT (MBH)	CONTINUOUS FLOW RATE (GPM) AT 80° RISE	FLUE SIZE (IN.)	OUTLET TEMP SETTING (°F)	REMARKS
TWH-1	NORITZ MODEL NC380	380	7.8	6	120	LP GAS, INSTALL F

PLUMBING LEGEND

SCHEDULE

. PER MANUFACTURER'S INSTRUCTIONS FOR MULTI-UNIT INSTALLATION

SHOCK ABSORBER SCHEDUL PDI RATING SYMBOL В А С PRECISION PLUMBING PRODUCTS SC-500 SC-750 SC-1000 WATTS REGULATOR COMPANY 0750030 0750053 0750060 WADE 5-P 10-P 20-P

* MANUFACTURERS NAMES AND MODEL NUMBERS ARE SHOWN ONLY TO REPRESENT TYPE, STYLE AND LEVEL OF QUALITY EXPECTED, SIMILAR PRODUCTS BY OTHER MANUFACTURERS WILL BE ACCEPTABLE.

PIPING (INDICATED AS SINGLE LINEWORK) PIPING (INDICATED AS DOUBLE LINEWORK) NDICATED AS HEAVY LINEWORK)

ECIRCULATION TER INAGE (SOIL/WASTE)

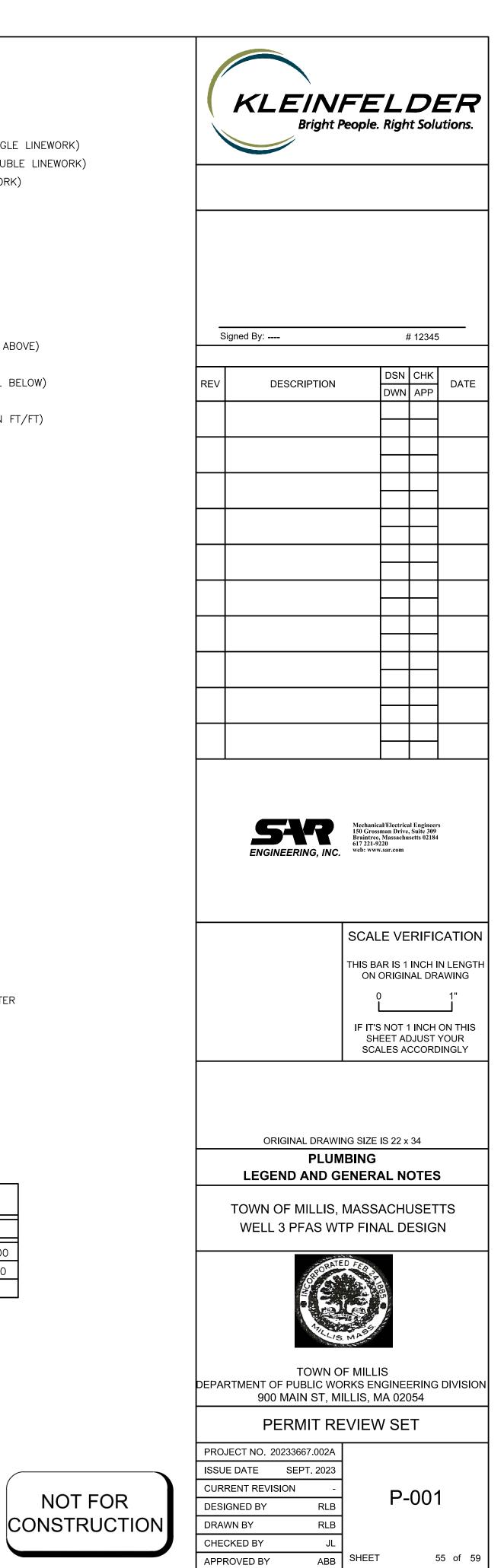
PROPANE) TES LEVEL ABOVE) DES NOT PENETRATE LEVEL ABOVE) RATES LEVEL BELOW) OES NOT PENETRATE LEVEL BELOW) FLOW DESIGNATION OF SLOPE (IN FT/FT)

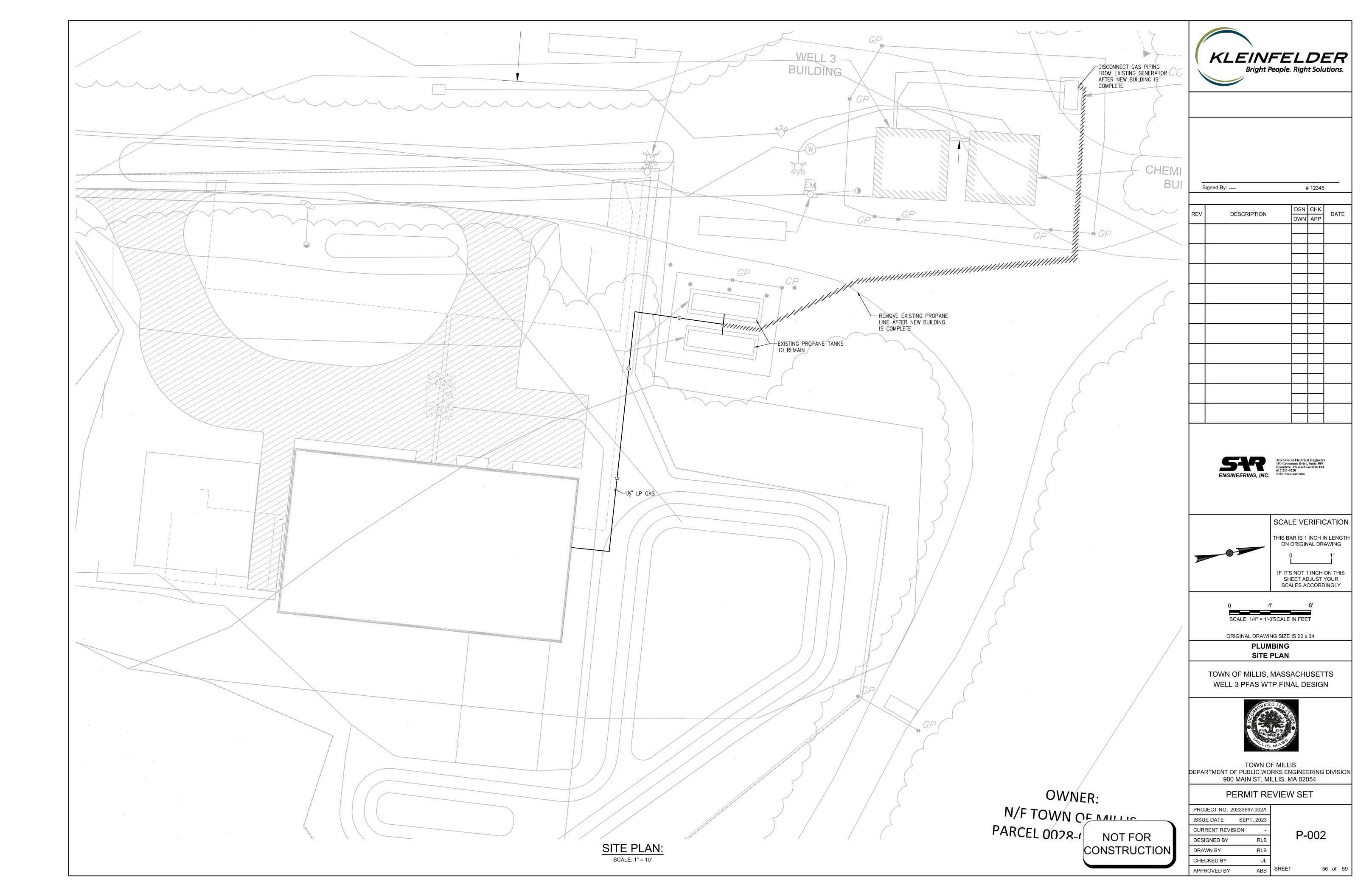
LVE ASSEMBLY

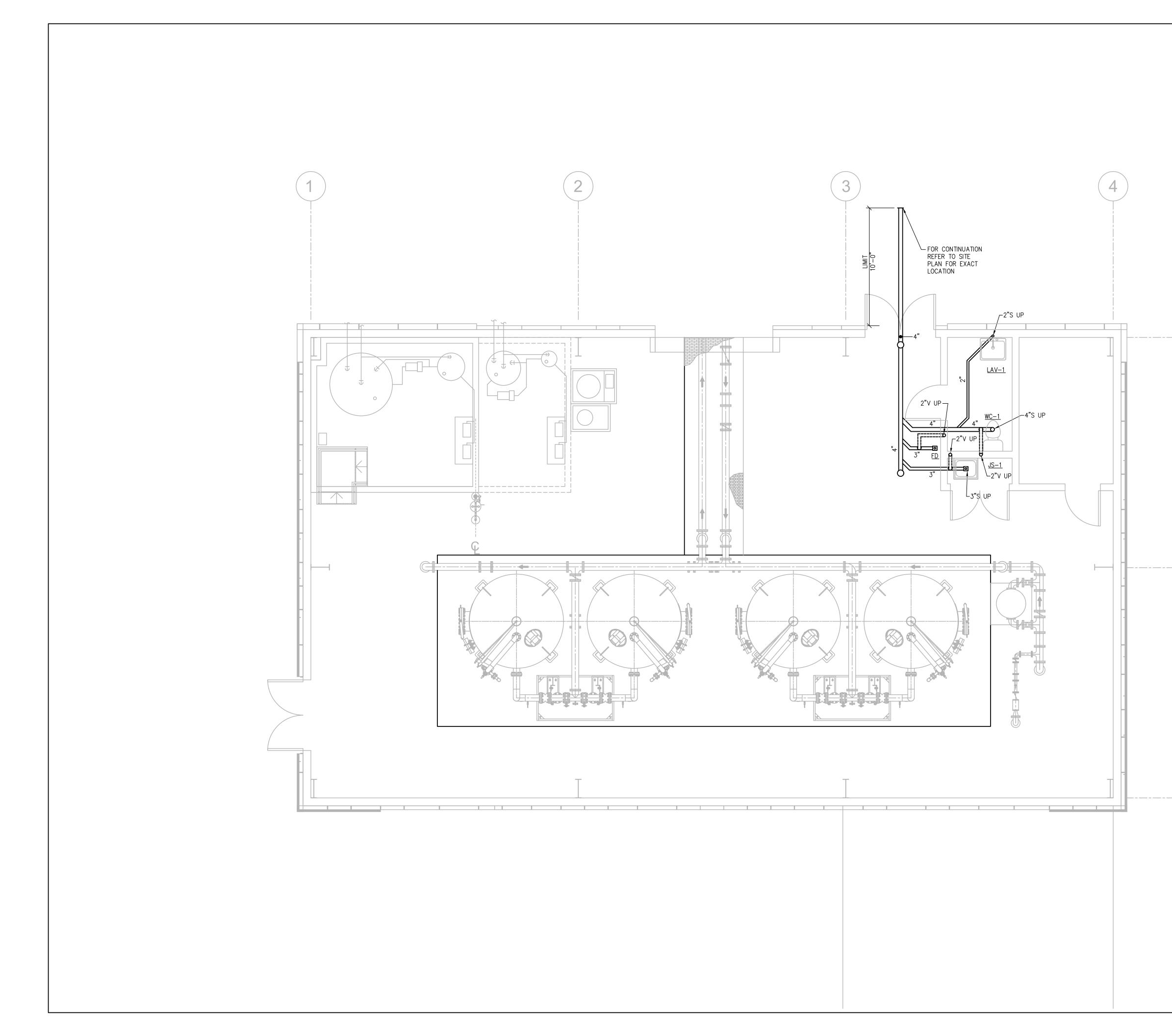
DUCING VALVE

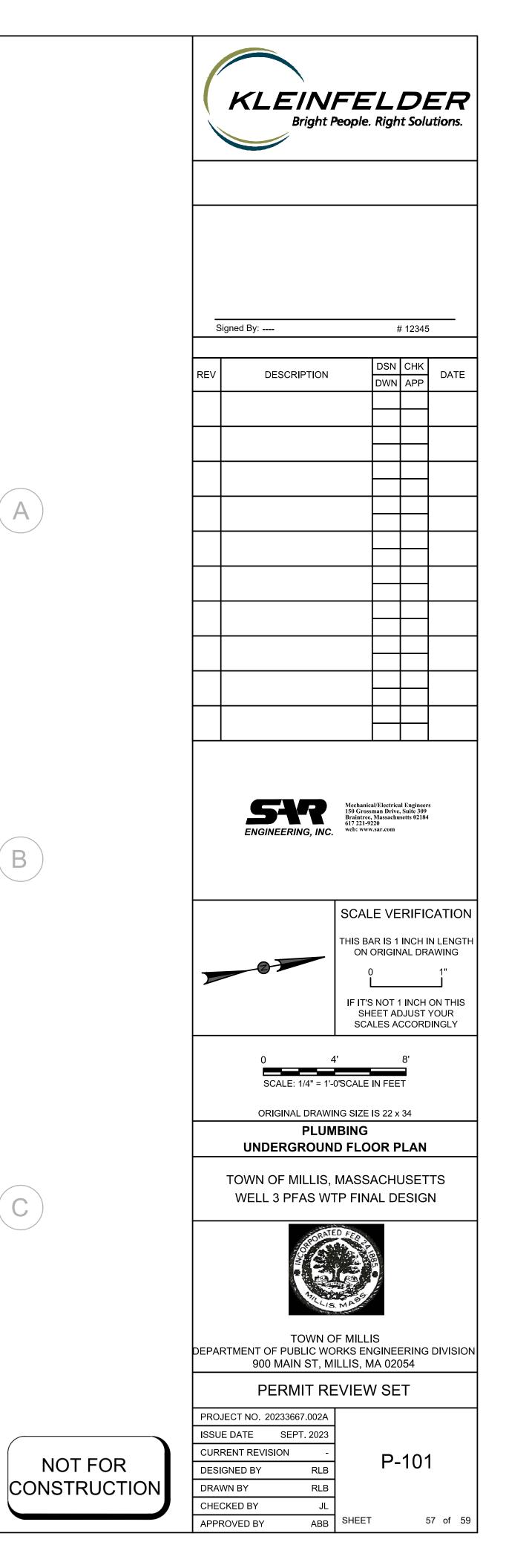
WITH HOSE THREADS VALVE UGE BER

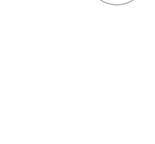
BING CONTRACT NTRACTOR EN OSED ION ER HOUR

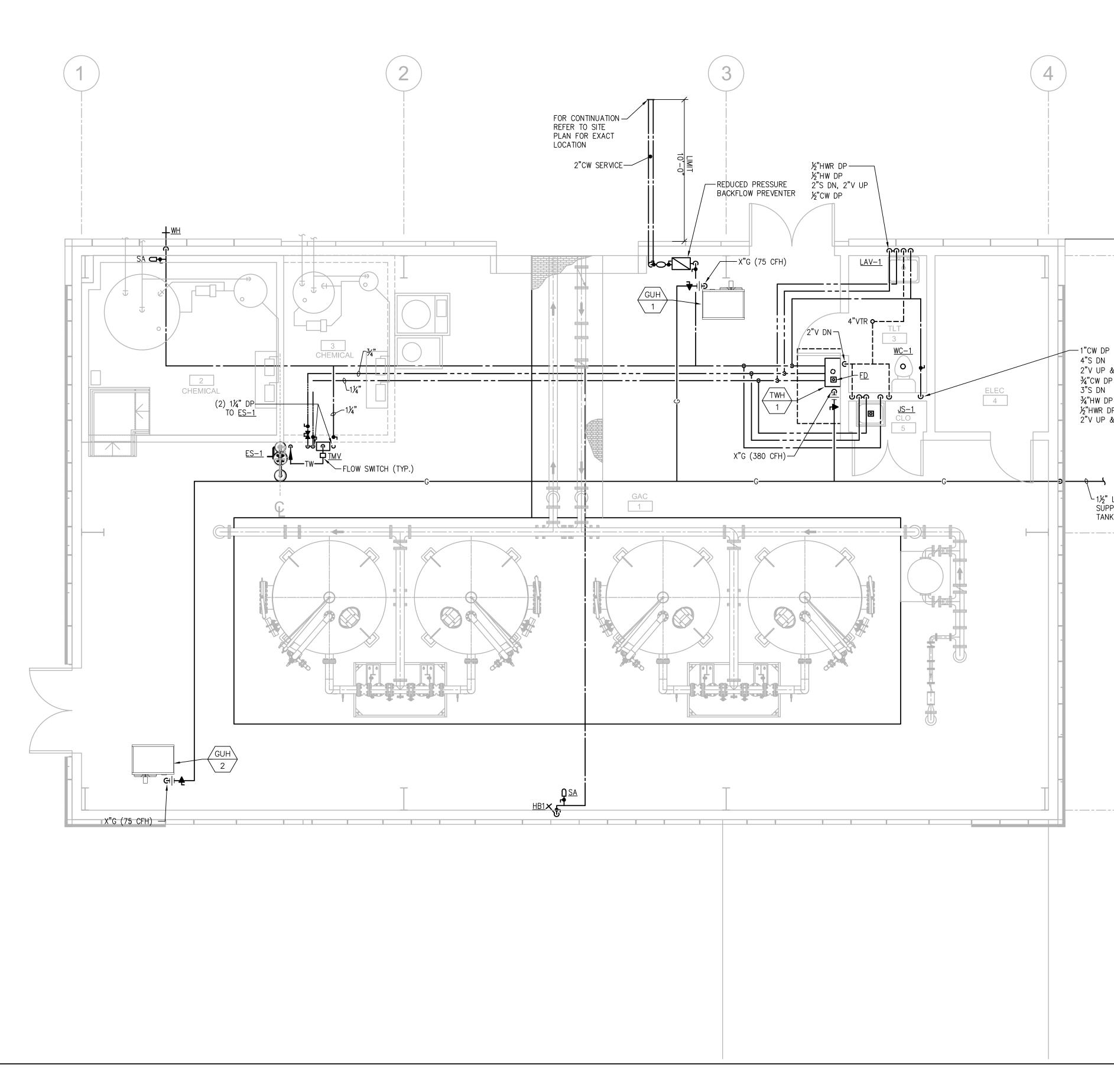

IECTION

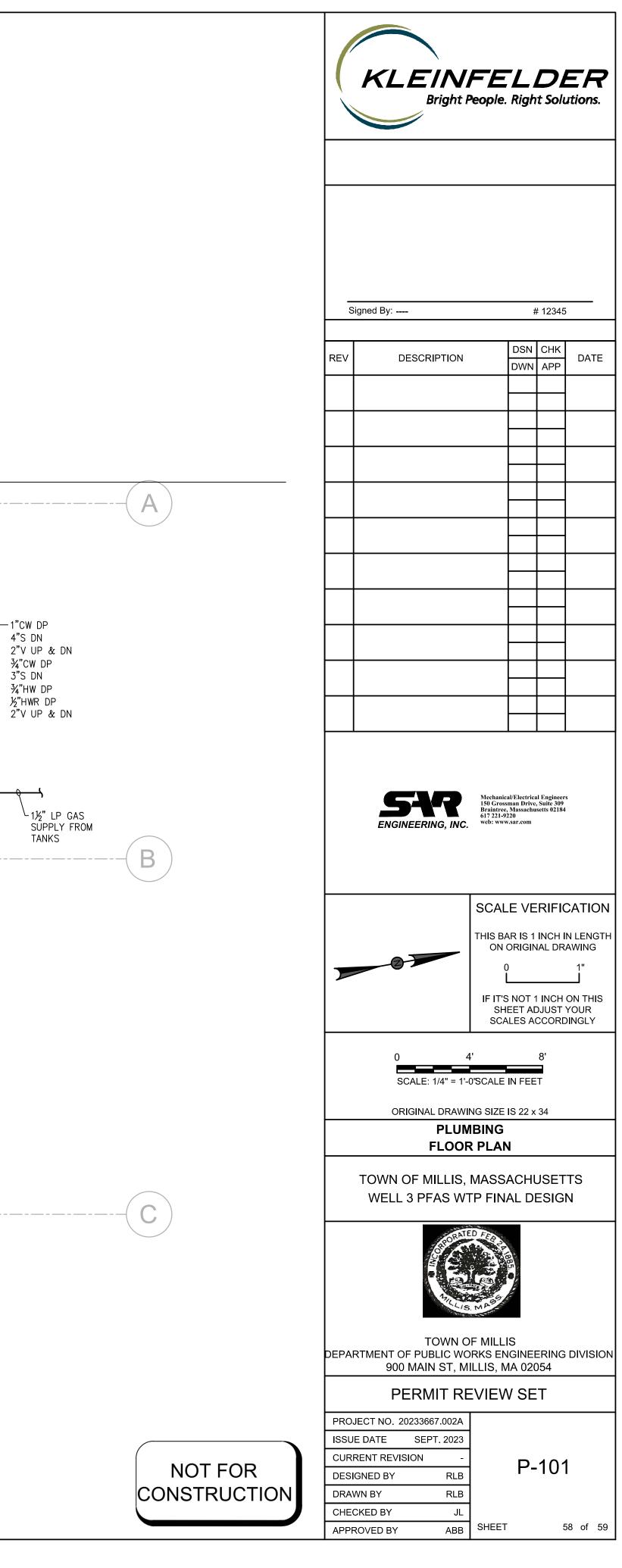

SLEEVE TURE DESIGNATION

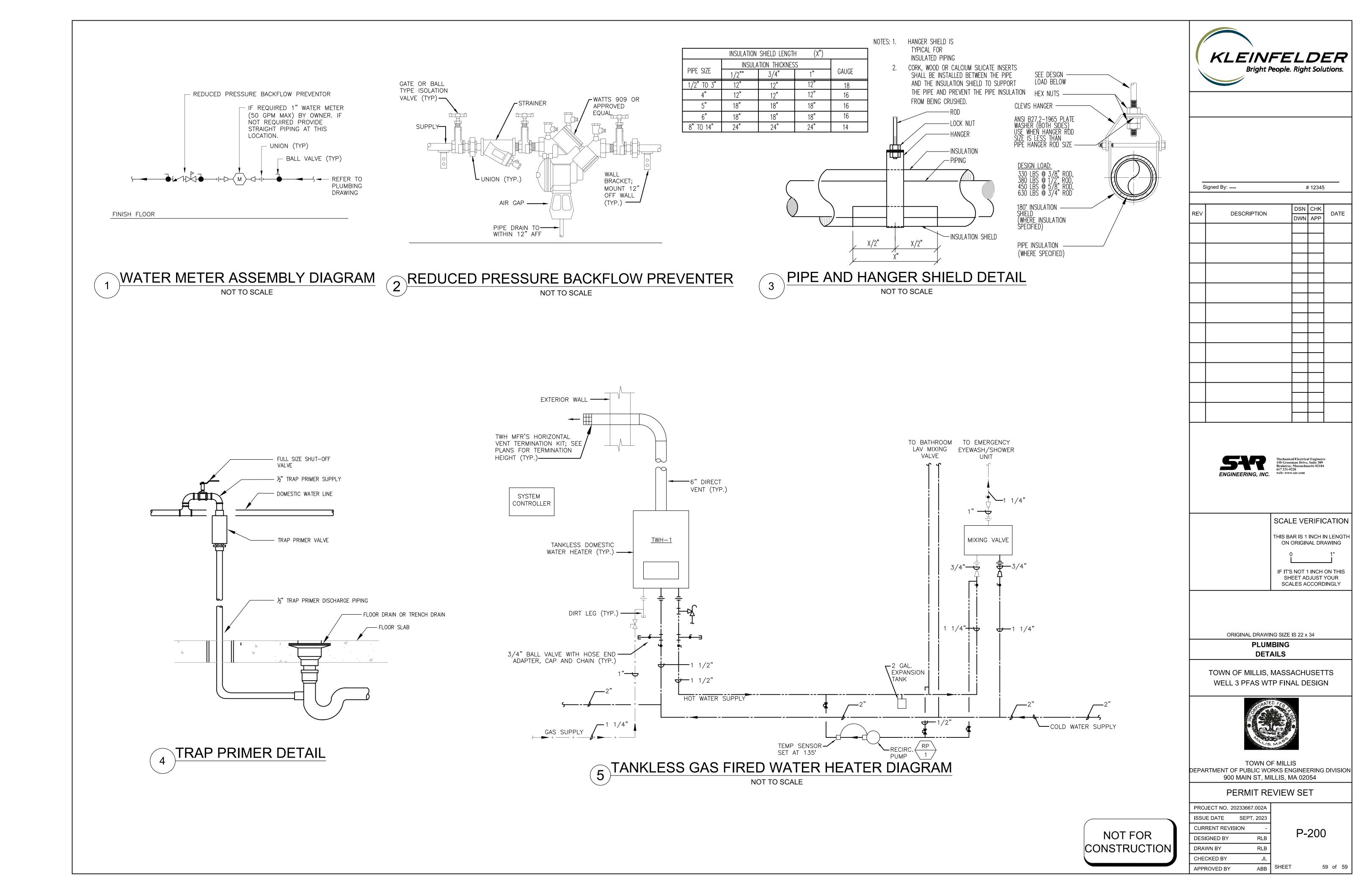

ESSURE BACKFLOW PREVENTER TER HEATER OR ELEVATION NG CONTRACT PED LENGTH HOWER/EYE WASH STATION HOWER STATION


_E*	
D	E
SC-1250	SC-1500
0750070	0750090
50-P	75–P


NOT FOR






 (\mathbf{A})

ATTACHMENT E Stormwater Report

MEMORANDUM

TO:	Town of Millis Conservation Commission
FROM:	Greg Avenia, P.E., Kleinfelder
DATE :	October 2023
SUBJECT:	Millis Well 3 PFAS Treatment Facility Design, Village Street, Millis, MA 02054
CC:	Tyler Bernier, P.E., Kleinfelder

This Stormwater Management Report has been prepared to show compliance with the Massachusetts Stormwater Management Standards to support the Project's Notice of Intent Application.

The Town of Millis is proposing the installation of a 70' x 45' PFAS treatment facility to support Well 3 off Village Street in Millis, MA. The proposed development will also include the installation of above-ground backwash storage tanks, associated utilities including a tight tank sewer system, a paved driveway and an infiltration basin.

1 EXISTING DRAINAGE CONDITIONS

The proposed site is adjacent to the existing Well 3 facilities, southwest along the existing gravel driveway. The intersection of the gravel driveway and Birch Street is approximately 1,500 feet to the southwest. Under existing conditions, the proposed 31,581 square-foot site is mostly wooded. Wooded area borders the site to the south, the gravel driveway and wetland to the west, existing Well 3 infrastructure to the north, and a grassed field to the east past a loop in the gravel driveway.

The entirety of the site is within the Charles River watershed. Stormwater drains in two directions from a high point to the southeast of the proposed site. Approximately half of the site drains to the wetlands to the northwest, with the rest draining towards Maple Swamp located to the east. Both wetlands ultimately connect to the Charles River.

2 PROPOSED DRAINAGE CONDITIONS

Stormwater flows will emulate existing drainage conditions to the maximum extent possible, however a portion of the site that currently drains to the wetlands west of the site has been rerouted to the east to maximize water quality and quantity treatment via the proposed infiltration basin. Kleinfelder estimates that the proposed development will create approximately 7,510 square feet of new impervious area, comprised of the proposed treatment building, paved driveway, and concrete pad for above-ground backwash storage tanks. The existing chemical feed building will be demolished down to existing grade and the equipment will

be relocated to the new treatment facility. The working area of the site will be graded to emulate existing drainage patterns in slopes ranging from 1% to approximately 5%. Proposed grades will be tied into existing grade at a maximum of 3:1 H:V slopes.

A stormwater swale along the existing gravel drive will capture the majority of runoff coming from the proposed building roof, the paved access drive, and concrete pad. The swale will direct stormwater to the proposed infiltration basin to the north of the site via an 8-inch pipe. Stormwater from the rear of the building will be directed to the proposed basin by a berm. The project site has been located and designed so that the impact within the 100-foot wetland buffer and 100-year flood zone are minimized to the maximum extent possible.

3 HYDROLOGIC ANALYSIS

A HydroCAD hydrologic analysis was performed under both existing and proposed conditions. Each model was analyzed for the 1, 2, 5, 10, 25, and 100-year storm events. Rainfall data was acquired from the Precipitation Frequency Data Server maintained by NOAA. The total watershed for the site was measured to be approximately 0.65 acres. Stormwater flow comes from an existing high point southeast of the project site and flows to the wetland to the west or to Maple Swamp to the east.

The soil data used for this analysis was acquired via the Web Soil Survey, provided by NRCS. Within the project site, areas not classified as water or impervious areas are generally hydrologic soil group A. Soils on the site are classified as very sandy loams and loamy sands.

For analysis of existing conditions, the site was divided into two main sub-watershed areas separated by a natural high point that extends across the project area, effectively dividing the site in half.

- SC-1 is approximately 24,786 square feet in area. It represents the western portion of the site and is comprised of woods in good conditions, unconnected impervious area, such as building roofs and tank concrete pads, and gravel access road. Stormwater drains across the access drive to the wetland west of the site.
- SC-2 is approximately 19,349 square feet in area. It encompasses the easter portion of the site and drains to the east toward Maple Swamp. Ground cover in this area is entirely woods in good condition.

Under proposed conditions, the site was separated into five sub-watershed areas based on proposed drainage features and grading.

- SC-1 is approximately 3,356 square feet in area. It represents a portion of the site driveway the drains to the west before being captured by the proposed stormwater system. Ground cover in this area includes paved surfaces, gravel access drive, and grassed area.
- SC-2 is approximately 11,864 square feet in area. It encompasses most of the developed area of the site that flows to the west. Ground cover includes paved surface, concrete pads, building roofs, and

grassed area. Stormwater from this area is captured by the proposed stormwater system and routed to an infiltration basin.

- SC-3 is approximately 9,595 square feet in area. This subcatchment area includes areas of direct flow from the north and east sides of the site into the infiltration basin. Ground cover includes grassed areas and the area of the infiltration basin, classified as water surface area.
- SC-4 is approximately 7,531 square feet in area. This encompasses the backside of the berm on the east side of the proposed infiltration basin, pressure relief outlet, and woods extending to the gravel road surrounding the site. Ground cover in this area is classified as a wood/grass combination.
- SC-5 is approximately 11,789 square feet in area. This represents the area on the west side of the site that is not captured by the stormwater system and flows directly to the western wetland. The ground cover in this area includes the existing well 3 building, the existing gravel access drive, and grassed area.

The watershed area has been standardized between the two analyses to allow direct comparison of the impact of the proposed development. Both models include two design points that are used to analyze and compare stormwater flow rates and volumes.

- Design Point 1, or "DP-1" represents the wetlands to the west of the project site.
- Design Point 2, or "DP-2" represents outflow from the project site to the east, ultimately into Maple Swamp.

4 MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION (MASSDEP) – STORMWATER MANAGEMENT STANDARDS

As demonstrated below, the proposed Project complies with the MassDEP Stormwater Management Standards (the Standards) to the maximum extent practicable. Under the Stormwater Management Standards, the Project is considered a new develop project because it involves the construction of a new drinking water treatment facility. The Project has been designed to meet the Stormwater Management Standards to the maximum extent practicable and to improve upon existing conditions.

4.1 STANDARD 1: NO NEW UNTREATED DISCHARGES

No new stormwater conveyance (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

No change:

The Project has been designed to comply with Standard 1. Under existing conditions, there are no existing outfalls within the project area and no best management practices in place; runoff currently flows overland directly from the site to the wetlands to the west, or to Maple Swamp to the east. Under proposed conditions, a portion of the stormwater originally destined to flow from the site to the western wetlands will be intercepted by a proposed swale and rerouted to the proposed infiltration basin. On the eastern portion of the site, a berm will redirect runoff toward the proposed basin. No untreated discharges are proposed.

- A stone gabion basket weir is proposed to create a sediment forebay within the proposed infiltration basin to provide the required pretreatment.
- The infiltration basin will provide primary water quality treatment for this development. The basin has been sized to accommodate the 100-year 24-hour storm event for areas that drain to it. An emergency overflow weir with riprap erosion protection is proposed as a precautionary measure.

4.2 STANDARD 2: PEAK RATE ATTENUATION

Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

Standard Met:

The Project has been designed to comply with Standard 2. The infiltration basin on the north side of the site will receive all the runoff from the impervious area added as a result of the development. The existing access road will be regraded near the proposed stormwater swale on the western side of the site to capture the maximum amount of runoff practicable. Areas that are not paved will be loamed and seeded at the end of construction.

A HydroCAD analysis was performed on both existing and proposed conditions, attached under **Appendix C**. A summary of this analysis in relation to standard 2 is below:

Design Storm	Existing Peak Flow (cfs)	Proposed Peak Flow (cfs)
1-Year	0.62	0.41
2-Year	0.77	0.51
5-Year	1.02	0.67
10-Year	1.23	0.81
25-Year	1.51	1.01
100-Year	1.95	1.38

TABLE 1: PEAK FLOWS AT DESIGN POINT 1

TABLE 2: PEAK FLOWS AT DESIGN POINT 2

Design Storm	Existing Peak Flow (cfs)	Proposed Peak Flow (cfs)
1-Year	0.00	0.00
2-Year	0.00	0.00
5-Year	0.00	0.00
10-Year	0.00	0.00
25-Year	0.01	0.00
100-Year	0.07	0.05

The post-development peak rates are equal to or less than the peak rates under existing conditions for all the analyzed storm events.

4.3 STANDARD 3: STORMWATER RECHARGE

Loss of annual recharge to groundwater shall be eliminated or minimized through the use of environmentally sensitive site design, low impact development techniques, stormwater management practices and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil types. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Standard Met:

The Project has been designed to comply with Standard 3. The proposed infiltration basin has 5,937 cubic feet of storage and can infiltrate the 100-year storm event for most of the project site. The required recharge volume calculation is included below.

TABLE 3: IMPERVIOUS AREA SUMMARY FOR STANDARD 3

Existing Impervious Area (sq. ft)	Proposed Impervious Area (sq. ft)	Change (sq. ft)
894	8,404	+7,510

The project site is surrounded by Hydrologic Soil Group A soils. Per the Massachusetts Stormwater Handbook, a recharge rate of 0.6 inches (0.05 feet) shall be used for all impervious area in areas with Hydrologic Soil Group A, the highest recharge rate outlined in the definition of Standard 3. When this rate is applied to the proposed additional impervious area of 0.18 acres or 7,753 square feet, the required recharge volume associated with this impervious area is calculated to 646 cubic feet. The proposed stormwater management system can store and infiltrate more than this required volume. See Appendix **E** for stormwater storage calculations.

4.4 STANDARD 4: WATER QUALITY

Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

- a) Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained.
- b) Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- c) Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Standard Met:

The Project has been designed to comply with Standard 4. The project ultimately discharges to the Charles River (MA 72-05), a class 5 waterbody per Massachusetts 2022 Integrated List of Waters.

Table 3 shows the stormwater treatment provided for the proposed development. Water Quality Volumes were calculated for the first 1.0" of runoff per the Massachusetts Stormwater Handbook new development standards.

TABLE 4: REQUIRED WATER QUALITY VOLUME (WQV) AT DESIGN POINT 1

Watershed	Area	Required WQV	Provided WQV	
Existing Total Impervious Area	894 sf	0 cf*	0 of	
Proposed New Impervious Area (in addition to existing)	-354 sf	0 cf	- 0 cf	

*To Max. Extent Practicable

TABLE 5: REQUIRED WATER QUALITY VOLUME (WQV) AT DESIGN POINT 2

Watershed	Area	Required WQV	Provided WQV	
Existing Total Impervious Area	0 sf	0 cf*	- 3,348 cf	
Proposed New Impervious Area (in addition to existing)	7,864 sf	655 cf		

*To Max. Extent Practicable

A Long-Term Pollution Prevention Plan (LTPPP) and Operation & Maintenance Plan is included in Appendix D.

4.5 STANDARD 5: LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLS)

For Land Uses with Higher Potential Pollutant Loads (LUHPPLs), source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all LUHPPLs cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from LUHPPLs shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

No change:

Standard 5 does not apply to the Project. There are no Land Uses with Higher Potential Pollutant Loads within the project area.

4.6 STANDARD 6: CRITICAL AREAS

Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or to any other critical area require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "stormwater discharge" as defined in 314 CMR 3.04(2)(a)1 or (b), to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

Standard Met:

The project is within a Zone I Wellhead Protection Area. However, the proposed infiltration basin is sized to accommodate the 100-year 24-hour storm event without discharging to the surrounding area. An emergency overflow weir is provided as a precautionary measure but is not anticipated to see flow up to and including the 100-year storm event. Additionally, the project proposed is essential to the operation of a public water supply. Thus, Standard 6 is met.

4.7 STANDARD 7: REDEVELOPMENTS AND OTHER PROJECTS SUBJECT TO THE STANDARDS ONLY TO THE MAXIMUM EXTENT PRACTICABLE

A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

No substantive change:

The Project is considered a new development and is subject to all Standards 1 through 10.

4.8 STANDARD 8: CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROLS

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

Millis Well 3 PFAS Facility Stormwater Memorandum

Standard Met:

The site plans call for the installation of sediment control barriers around the perimeter of the site to prevent off-site sediment transport. A construction exit will be provided to reduce transport of sediment off-site via construction traffic. All stockpiles will be surrounded with straw wattle during the earthwork phase of construction. A SWPPP will be prepared by the contractor prior to the onset of construction.

During construction, the contractor will be required to address any erosion issues that appear as a result of land disturbance. This may include the installation of additional sediment barrier, temporary erosion control matting, or temporary seeding. Erosion control measures will be repaired as necessary during construction. The contractor will be required to install and maintain all erosion control measures in accordance with the Massachusetts Stormwater Handbook.

Stormwater controls must be maintained in good operating condition until all disturbed soils are permanently stabilized. To ensure this, the following areas will be inspected by the Contractor every week and after every rainfall event of 0.5 inches or greater:

The following standard maintenance practices will apply to the erosion and sedimentation controls for the project:

- All erosion and sediment control measures will be properly maintained. If repairs or other maintenance is necessary, it will be initiated by the Contractor within 24 hours of report;
- Straw Wattles will be inspected for depth of sediment, tears, to see if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground;
- Built up sediment will be removed from straw wattles when it has reached one-half the height of the fence and at end of the job;
- Erosion control measures will be maintained for disturbed areas of the site that have not been stabilized;
- Erosion control measures will be installed and maintained for the construction staging area, stockpiles, and material storage areas until those areas have been stabilized after construction; and,
- Temporary and permanent seeding and planting will be inspected for bare spots, washouts, and healthy growth.

If the inspections reveal the need for additional control devices to prevent erosion and sedimentation, the Contractor will promptly install additional protection devices as required. Control devices in need of repair will be repaired promptly after identification. A stockpile of 100 linear feet of straw wattles will be maintained on the site and under cover for emergency repairs and routine maintenance.

The Owner (or their representative) will be responsible for preparing an inspection and maintenance report following each inspection and filing completed reports after maintenance action has taken place by the Contractor. The Contractor's superintendent will be responsible for maintenance and repair activities and completing and signing the maintenance action portion of inspection and maintenance reports.

4.9 STANDARD 9: OPERATION AND MAINTENANCE PLAN

A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Standard Met:

An Operation & Maintenance Plan is referenced as Appendix D and is provided under separate cover.

4.10 STANDARD 10: PROHIBITION OF ILLICIT DISCHARGES

All illicit discharges to the stormwater management system are prohibited.

<u>No change</u>

<u>Illicit Discharge Statement</u> The project's stormwater management system, as shown on the plans submitted with this report, have been designed in full compliance with Standard 10. The project area does not have any known illicit connections.

Attachments:	Appendix A – Stormwater Checklist
	Appendix B – Drainage Figures
	Appendix C – HydroCAD Analysis
	C.1 – Existing Conditions
	C.2 – Proposed Conditions
	Appendix D – Stormwater Operation and Maintenance Plan
	Appendix E – Water Quality Calculation
	Appendix F – Project Data: NOAA Rainfall and NRCS Web Soil Survey
	Appendix G – Boring Log

Appendix A Stormwater Checklist Stormwater Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

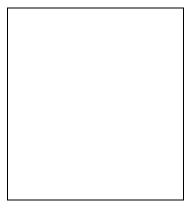
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

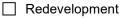

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\square	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
\square	Other (describe): Infiltration Basin
_	

Standard 1: No New Untreated Discharges

- \boxtimes No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis pro	vided.
-------------------	--------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🛛 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs	have been sized	to infiltrate the	Required	Recharge V	olume.
-------------	---------------	-----------------	-------------------	----------	------------	--------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Sta	Standard 4: Water Quality (continued)			
\boxtimes	The BMP is sized (and calculations provided) based on:			
	The $\frac{1}{2}$ " or 1" Water Quality Volume or			
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.			
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.			
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.			
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)			
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.			
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.			
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.			
	All exposure has been eliminated.			
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.			
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.			
Sta	ndard 6: Critical Areas			
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.			

Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Proje	ect
---------------	-----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

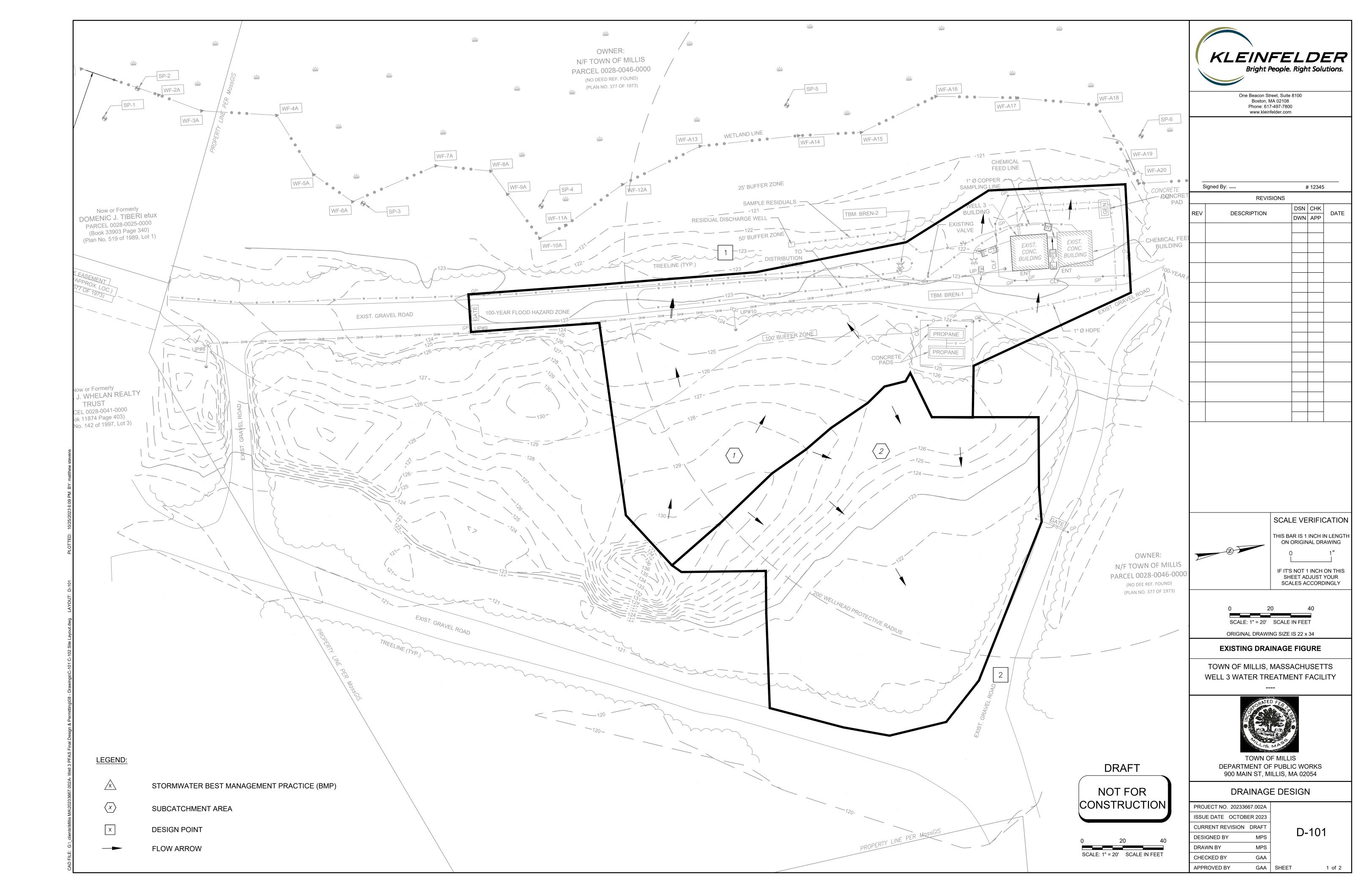
- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

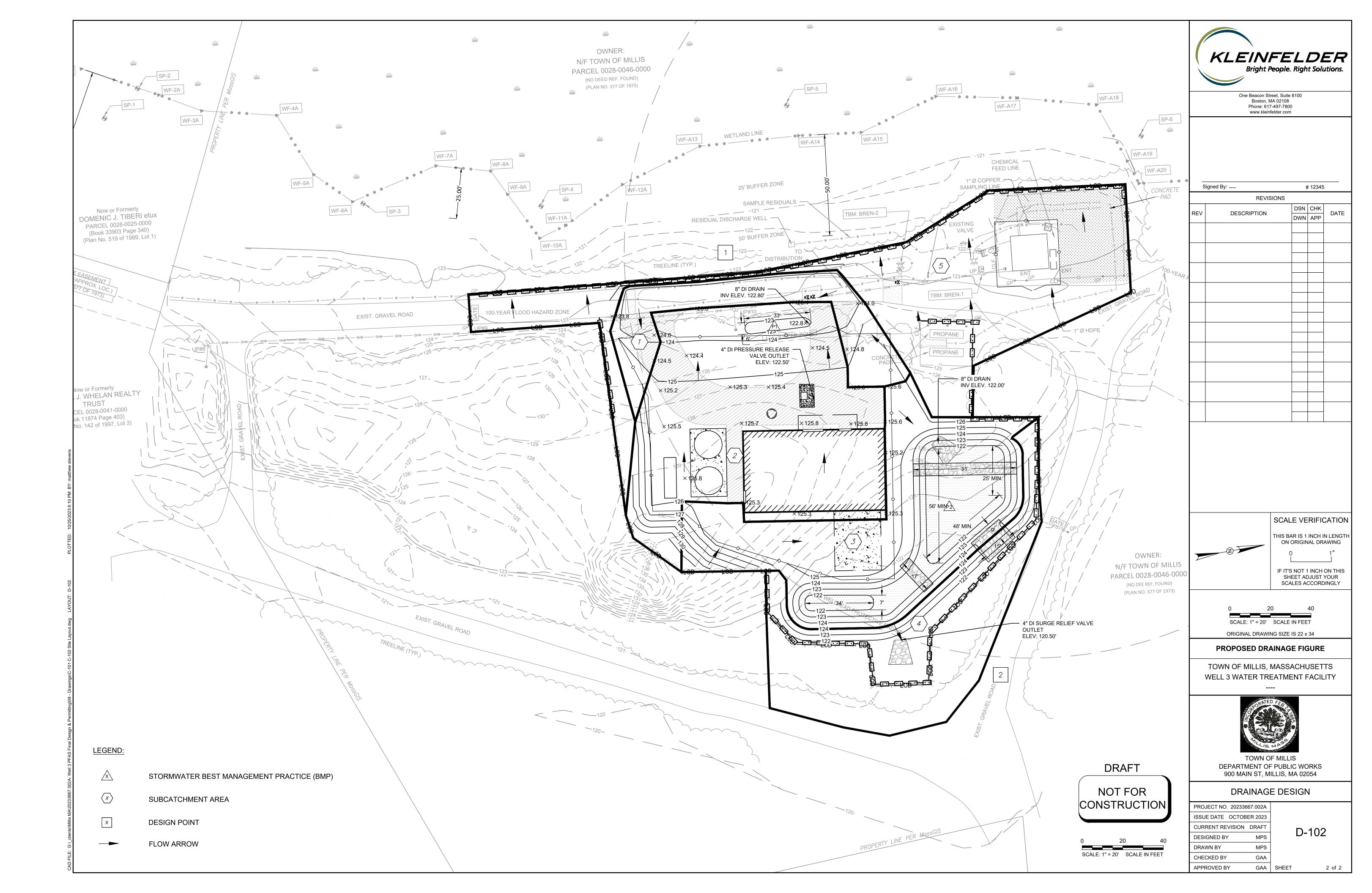
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

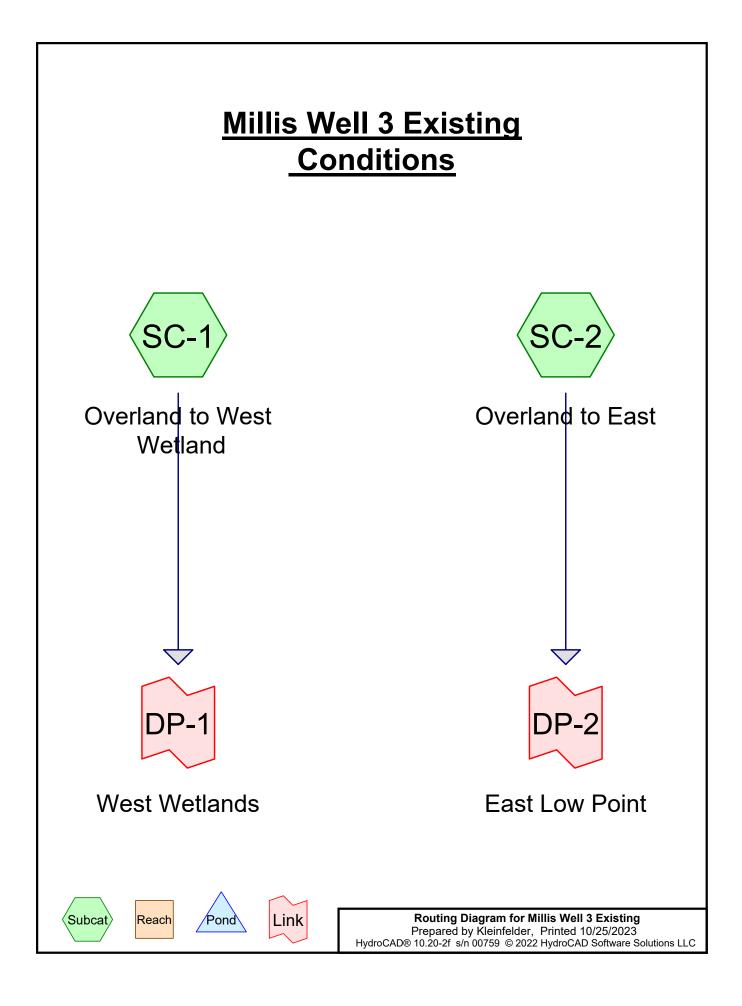
Standard 9: Operation and Maintenance Plan


- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix B Drainage Figures



Appendix C HydroCAD Analysis

Appendix C.1 Existing Conditions

Millis Well 3 Existing

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type III 24-hr		Default	24.00	1	2.76	2
2	2-Year	Type III 24-hr		Default	24.00	1	3.39	2
3	5-Year	Type III 24-hr		Default	24.00	1	4.42	2
4	10-Year	Type III 24-hr		Default	24.00	1	5.28	2
5	25-Year	Type III 24-hr		Default	24.00	1	6.45	2
6	100-Year	Type III 24-hr		Default	24.00	1	8.27	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.226	96	Gravel surface, HSG A (SC-1)
0.021	98	Impervious, HSG A (SC-1)
0.766	30	Woods, Good, HSG A (SC-1, SC-2)
1.013	46	TOTAL AREA

Millis Well 3 Existing Prepared by Kleinfelder	Type III 24-hr 1-Year Rainfall=2.76" Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	CAD Software Solutions LLC Page 4
Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.01" Tc=6.0 min CN=WQ Runoff=0.62 cfs 0.048 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af
Link DP-1: West Wetlands	Inflow=0.62 cfs_0.048 af
	Primary=0.62 cfs 0.048 af
Link DP-2: East Low Point	Inflow=0.00 cfs_0.000 af
	Primary=0.00 cfs 0.000 af
Total Runoff Area = 1.013 a	ac Runoff Volume = 0.048 af Average Runoff Depth = 0.57"

Total Runoff Area = 1.013 acRunoff Volume = 0.048 afAverage Runoff Depth = 0.57"97.97% Pervious = 0.993 ac2.03% Impervious = 0.021 ac

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.62 cfs @ 12.09 hrs, Volume= 0.048 af, Depth= 1.01" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

	Area (sf)	CN	Description			
	14,031	30	Woods, Go	od, HSG A		
	9,861	96	Gravel surfa	ace, HSG A	Α	
*	894	98	Impervious	HSG A		
	24,786		Weighted A	verage		
	23,892	57	96.39% Pe	vious Area	ì	
	894	98	3.61% Impervious Area			
	Tc Length	Slop	e Velocity	Capacity	Description	
(m	nin) (feet)	(ft/1	t) (ft/sec)	(cfs)		
	6.0				Direct Entry, Tc Min	

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= Routed to Link DP-2 : East Low Point 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

Area (sf)	CN	Description		
19,349	30	Woods, Go	od, HSG A	
19,349	30	100.00% Pe	ervious Are	a
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands

Inflow Area =	0.569 ac,	3.61% Impervious, Inflo	w Depth = 1.01"	for 1-Year event
Inflow =	0.62 cfs @	12.09 hrs, Volume=	0.048 af	
Primary =	0.62 cfs @	12.09 hrs, Volume=	0.048 af, Atte	en= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area	a =	0.444 ac,	0.00% Impervious, Inflow	Depth = 0.00"	for 1-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Millis Well 3 Existing Prepared by Kleinfelder	Type III 24-hr 2-Year Rainfall=3.39" Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	
Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.28" Tc=6.0 min CN=WQ Runoff=0.77 cfs 0.061 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af
Link DP-1: West Wetlands	Inflow=0.77 cfs_0.061 af
	Primary=0.77 cfs 0.061 af
Link DP-2: East Low Point	Inflow=0.00 cfs_0.000 af
	Primary=0.00 cfs 0.000 af
Total Runoff Area = 1.013 a	ac Runoff Volume = 0.061 af Average Runoff Depth = 0.72"

Total Runoff Area = 1.013 acRunoff Volume = 0.061 afAverage Runoff Depth = 0.72"97.97% Pervious = 0.993 ac2.03% Impervious = 0.021 ac

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 1.28" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

	Area (sf)	CN	Description			
	14,031	30	Woods, Go	od, HSG A		
	9,861	96	Gravel surfa	ace, HSG A	Α	
*	894	98	Impervious	HSG A		
	24,786		Weighted A	verage		
	23,892	57	96.39% Pe	vious Area	ì	
	894	98	3.61% Impervious Area			
	Tc Length	Slop	e Velocity	Capacity	Description	
(m	nin) (feet)	(ft/1	t) (ft/sec)	(cfs)		
	6.0				Direct Entry, Tc Min	

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= Routed to Link DP-2 : East Low Point

0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

Area (sf)	CN	Description		
19,349	30	Woods, Go	od, HSG A	
19,349	30	100.00% Pe	ervious Are	a
Tc Length (min) (feet)	Slop (ft/f	e Velocity (ft) (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands

Inflow Area	a =	0.569 ac,	3.61% Impervious,	Inflow Depth = 1.2	8" for 2-Year event
Inflow	=	0.77 cfs @	12.09 hrs, Volume	e= 0.061 af	
Primary	=	0.77 cfs @	12.09 hrs, Volume	e= 0.061 af,	Atten= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area =		0.444 ac,	0.00% Impervious, Inflov	w Depth = $0.00"$	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Millis Well 3 Existing Prepared by Kleinfelder	<i>Type III 24-hr 5-Year Rainfall=4.42"</i> Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	CAD Software Solutions LLC Page 10
Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.73" Tc=6.0 min CN=WQ Runoff=1.02 cfs 0.082 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af
Link DP-1: West Wetlands	Inflow=1.02 cfs_0.082 af
	Primary=1.02 cfs 0.082 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.000 af
	Primary=0.00 cfs 0.000 af
Total Runoff Area = 1.013 a	ac Runoff Volume = 0.082 af Average Runoff Depth = 0.97"

Total Runoff Area = 1.013 acRunoff Volume = 0.082 afAverage Runoff Depth = 0.97"97.97% Pervious = 0.993 ac2.03% Impervious = 0.021 ac

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.02 cfs @ 12.09 hrs, Volume= 0.082 af, Depth= 1.73" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

	Area (sf)	CN	Description		
	14,031	30	Woods, Go	od, HSG A	
	9,861	96	Gravel surfa	ace, HSG A	Α
*	894	98	Impervious	, HSG A	
	24,786		Weighted A	verage	
	23,892	57	96.39% Pe	rvious Area	1
	894	98	3.61% Impe	ervious Are	a
T (min		Slop (ft/f	,	Capacity (cfs)	Description
6.	C				Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= Routed to Link DP-2 : East Low Point 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

Area (sf)	CN	Description		
19,349	30	Woods, Goo	od, HSG A	
19,349	30	100.00% Pe	ervious Are	a
Tc Length (min) (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands

Inflow Area =	0.569 ac,	3.61% Impervious, Inflow	Depth = 1.73"	for 5-Year event
Inflow =	1.02 cfs @	12.09 hrs, Volume=	0.082 af	
Primary =	1.02 cfs @	12.09 hrs, Volume=	0.082 af, Atte	en= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area =		0.444 ac,	0.00% Impervious, Inflov	v Depth = 0.00"	for 5-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Millis Well 3 Existing Prepared by Kleinfelder	<i>Type III 24-hr 10-Year Rainfall=5.28"</i> Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	CAD Software Solutions LLC Page 13
Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=2.10" Tc=6.0 min CN=WQ Runoff=1.23 cfs 0.100 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.02" Tc=6.0 min CN=30 Runoff=0.00 cfs 0.001 af
Link DP-1: West Wetlands	Inflow=1.23 cfs 0.100 af
	Primary=1.23 cfs 0.100 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.001 af
	Primary=0.00 cfs 0.001 af
Total Runoff Area = 1.013 a	ac Runoff Volume = 0.100 af Average Runoff Depth = 1.19"

Total Runoff Area = 1.013 acRunoff Volume = 0.100 afAverage Runoff Depth = 1.19"97.97% Pervious = 0.993 ac2.03% Impervious = 0.021 ac

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.23 cfs @ 12.09 hrs, Volume= 0.100 af, Depth= 2.10" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

	Area (sf)	CN	Description		
	14,031	30	Woods, Go	od, HSG A	
	9,861	96	Gravel surfa	ace, HSG A	4
*	894	98	Impervious	, HSG A	
	24,786		Weighted A	verage	
	23,892	57	96.39% Pe	rvious Area	l
	894	98	3.61% Impe	ervious Are	а
T (mir	c Length n) (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.	0				Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 22.19 hrs, Volume= Routed to Link DP-2 : East Low Point 0.001 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

Area (sf)	CN	Description		
19,349	30	Woods, Go	od, HSG A	
19,349	30	100.00% Pe	ervious Are	a
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands

Inflow Area =	0.569 ac,	3.61% Impervious, Inflo	w Depth = 2.10"	for 10-Year event
Inflow =	1.23 cfs @	12.09 hrs, Volume=	0.100 af	
Primary =	1.23 cfs @	12.09 hrs, Volume=	0.100 af, Atte	en= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area	a =	0.444 ac,	0.00% Impervious, I	nflow Depth = 0.02"	for 10-Year event
Inflow	=	0.00 cfs @	22.19 hrs, Volume=	0.001 af	
Primary	=	0.00 cfs @	22.19 hrs, Volume=	e 0.001 af, Atte	en= 0%, Lag= 0.0 min

Millis Well 3 Existing	Type III 24-hr 25-Year Rainfall=6.45"
Prepared by Kleinfelder	Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	AD Software Solutions LLC Page 16
Time span=0.00-7	2.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR	-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind	method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=2.67"
	Tc=6.0 min CN=WQ Runoff=1.51 cfs 0.127 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.13"
	Tc=6.0 min CN=30 Runoff=0.01 cfs 0.005 af
Link DP-1: West Wetlands	Inflow=1.51 cfs_0.127 af
	Primary=1.51 cfs 0.127 af
Link DP-2: East Low Point	Inflow=0.01 cfs_0.005 af
	Primary=0.01 cfs 0.005 af
Total Runoff Area = 1.013 a	c Runoff Volume = 0.131 af Average Runoff Depth = 1.56"

Runoff Area = 1.013 ac Runoff Volume = 0.131 af Average Runoff Depth = 1.56" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac

Runoff = 1.51 cfs @ 12.09 hrs, Volume= 0.127 af, Depth= 2.67" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

	Area (sf)	CN	Description			
	14,031	30	Woods, Go	od, HSG A		
	9,861	96	Gravel surfa	Gravel surface, HSG A		
*	894	98	Impervious,	HSG A		
	24,786		Weighted A	verage		
	23,892	57	96.39% Pe	vious Area	1	
	894	98	3.61% Impe	ervious Are	a	
T (min	5	Slop (ft/f	,	Capacity (cfs)	Description	
6.	C				Direct Entry, Tc Min	

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.01 cfs @ 14.96 hrs, Volume= Routed to Link DP-2 : East Low Point 0.005 af, Depth= 0.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

Area	(sf) CN	Description		
19,	349 30	Woods, Go	od, HSG A	
19,3	349 30	100.00% P	ervious Are	a
	ngth Slo feet) (ft/		Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands

Inflow Area =	0.569 ac,	3.61% Impervious, Inflow D	epth = 2.67"	for 25-Year event
Inflow =	1.51 cfs @	12.09 hrs, Volume=	0.127 af	
Primary =	1.51 cfs @	12.09 hrs, Volume=	0.127 af, Atte	en= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area	a =	0.444 ac,	0.00% Impervious,	Inflow Depth = 0.13	for 25-Year event
Inflow	=	0.01 cfs @	14.96 hrs, Volume	= 0.005 af	
Primary	=	0.01 cfs @	14.96 hrs, Volume	= 0.005 af, A	tten= 0%, Lag= 0.0 min

Millis Well 3 Existing Prepared by Kleinfelder	<i>Type III 24-hr 100-Year Rainfall=8.27"</i> Printed 10/25/2023
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroC	
Time span=0.00- Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points -20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=3.66" Tc=6.0 min CN=WQ Runoff=1.95 cfs 0.174 af
SubcatchmentSC-2: Overland to East	Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.48" Tc=6.0 min CN=30 Runoff=0.07 cfs 0.018 af
Link DP-1: West Wetlands	Inflow=1.95 cfs_0.174 af
	Primary=1.95 cfs 0.174 af
Link DP-2: East Low Point	Inflow=0.07 cfs 0.018 af Primary=0.07 cfs 0.018 af
Total Runoff Area = 1.013 a	ac Runoff Volume = 0.191 af Average Runoff Depth = 2.27"

Total Runoff Area = 1.013 acRunoff Volume = 0.191 afAverage Runoff Depth = 2.27"97.97% Pervious = 0.993 ac2.03% Impervious = 0.021 ac

Runoff = 1.95 cfs @ 12.09 hrs, Volume= 0.174 af, Depth= 3.66" Routed to Link DP-1 : West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

	Area (sf)	CN	Description		
	14,031	30	Woods, Go	od, HSG A	
	9,861	96	Gravel surface, HSG A		
*	894	98	Impervious	, HSG A	
	24,786		Weighted A	verage	
	23,892	57	96.39% Pe	rvious Area	1
	894	98	3.61% Impe	ervious Are	a
To (min		Slop (ft/f	,	Capacity (cfs)	Description
6.0)				Direct Entry, Tc Min

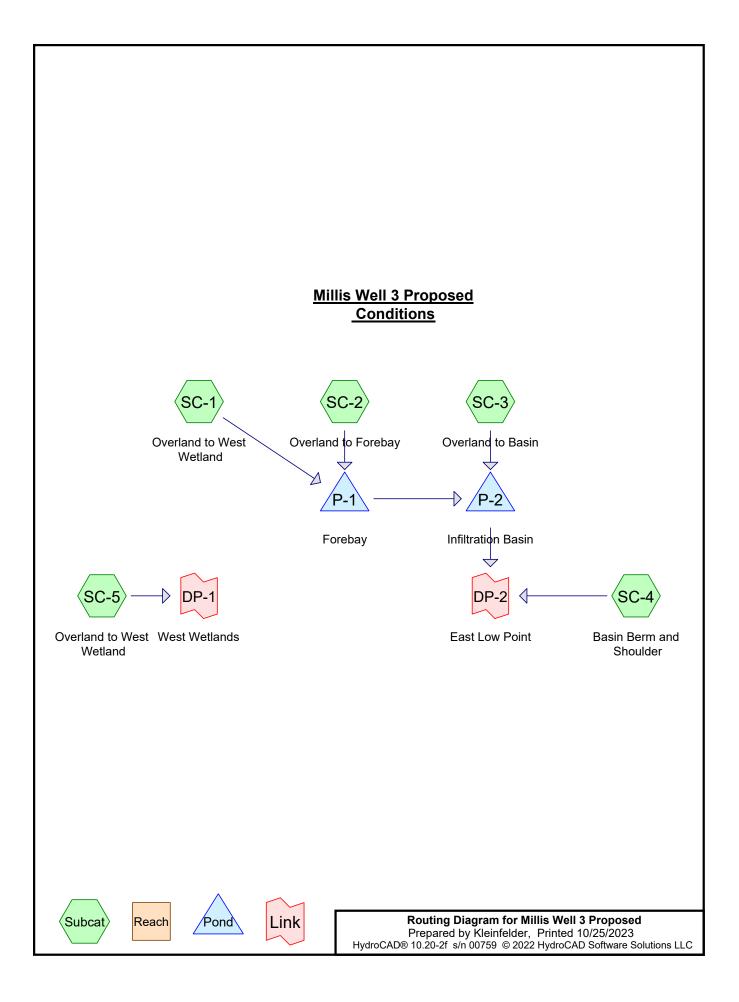
Summary for Subcatchment SC-2: Overland to East

Runoff = 0.07 cfs @ 12.40 hrs, Volume= Routed to Link DP-2 : East Low Point 0.018 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

Area (sf)	CN	Description		
19,349	30	Woods, Go	od, HSG A	
19,349	30	100.00% Pe	ervious Are	a
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0				Direct Entry, Tc Min

Summary for Link DP-1: West Wetlands


Inflow Area =	0.569 ac,	3.61% Impervious, Inflow	Depth = 3.66"	for 100-Year event
Inflow =	1.95 cfs @	12.09 hrs, Volume=	0.174 af	
Primary =	1.95 cfs @	12.09 hrs, Volume=	0.174 af, Atte	en= 0%, Lag= 0.0 min

Summary for Link DP-2: East Low Point

Inflow Area =	0.444 ac,	0.00% Impervious, Infl	ow Depth = 0.48 "	for 100-Year event
Inflow =	0.07 cfs @	12.40 hrs, Volume=	0.018 af	
Primary =	0.07 cfs @	12.40 hrs, Volume=	0.018 af, Atte	en= 0%, Lag= 0.0 min

Appendix C.2 Proposed Conditions

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type III 24-hr		Default	24.00	1	2.76	2
2	2-Year	Type III 24-hr		Default	24.00	1	3.39	2
3	5-Year	Type III 24-hr		Default	24.00	1	4.42	2
4	10-Year	Type III 24-hr		Default	24.00	1	5.28	2
5	25-Year	Type III 24-hr		Default	24.00	1	6.45	2
6	100-Year	Type III 24-hr		Default	24.00	1	8.27	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.186	96	Gravel surface, HSG A (SC-1, SC-5)
0.012	98	Impervious, HSG A (SC-5)
0.404	39	Pasture/grassland/range, Good, HSG A (SC-1, SC-2, SC-3, SC-5)
0.183	98	Paved parking, HSG A (SC-1, SC-2)
0.055	98	Water Surface, 0% imp, HSG A (SC-3)
0.173	32	Woods/grass comb., Good, HSG A (SC-4)
1.013	63	TOTAL AREA

Millis Well 3 Proposed Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 Hydrod	Type III 24-hr 1-Year Rainfall=2.76" Printed 10/25/2023 CAD Software Solutions LLC Page 4
Runoff by SCS TF	72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=1.48" Tc=6.0 min CN=WQ Runoff=0.12 cfs 0.010 af
SubcatchmentSC-2: Overland to Forebay	Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=1.58" Tc=6.0 min CN=WQ Runoff=0.44 cfs 0.036 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=0.63" Tc=6.0 min CN=WQ Runoff=0.14 cfs 0.012 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=1.40" Tc=6.0 min CN=WQ Runoff=0.41 cfs 0.032 af
Pond P-1: Forebay Discarded=0.02 cfs	Peak Elev=123.38' Storage=107 cf Inflow=0.57 cfs 0.045 af s 0.016 af Primary=0.49 cfs 0.029 af Outflow=0.51 cfs 0.045 af
Pond P-2: Infiltration Basin Discarded=0.12 cfs	Peak Elev=122.28' Storage=594 cf Inflow=0.62 cfs 0.041 af s 0.041 af Primary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.041 af
Link DP-1: West Wetlands	Inflow=0.41 cfs 0.032 af Primary=0.41 cfs 0.032 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 acRunoff Volume = 0.089 afAverage Runoff Depth = 1.05"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 0.010 af, Depth= 1.48" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN	Description		
	532	98	Paved park	ing, HSG A	A
	1,256	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	1,568	96	Gravel surfa	ace, HSG A	A
	3,356		Weighted A	verage	
	2,824	71	84.15% Per	vious Area	a de la constante de
	532	98	15.85% Imp	pervious Ar	ea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.44 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay 0.036 af, Depth= 1.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN	Description		
	7,418	98	Paved park	ing, HSG A	N
	4,446	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	11,864		Weighted A	verage	
	4,446	39	37.47% Pe	rvious Area	
	7,418	98	62.53% Imp	pervious Ar	ea
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 0.63" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

 Type III 24-hr
 1-Year Rainfall=2.76"

 Printed
 10/25/2023

 LC
 Page 6

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN	Description					
	7,531	32	32 Woods/grass comb., Good, HSG A					
	7,531	32	100.00% P	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
6.0					Direct Entry, Tc Min			
0.0					2			

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 0.41 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.032 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

	Area (sf)	CN	Description				
*	540	98	Impervious,	HSG A			
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	6,525	96	Gravel surfa	Gravel surface, HSG A			
	11,789		Weighted A	verage			
	11,249	72	95.42% Per	vious Area	a de la constante de		
	540	98	4.58% Impe	ervious Are	a		
T (min	5	Slop (ft/f	,	Capacity (cfs)	Description		
6.	0				Direct Entry, Tc Min		

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 1.56" for 1-Year event Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.045 af Outflow = 0.51 cfs @ 12.13 hrs, Volume= 0.045 af, Atten= 10%, Lag= 2.4 min Discarded = 0.02 cfs @ 12.13 hrs, Volume= 0.016 af Primary = 0.49 cfs @ 12.13 hrs, Volume= 0.029 af Routed to Pond P-2 : Infiltration Basin								
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.38' @ 12.13 hrs Surf.Area= 399 sf Storage= 107 cf								
Plug-Flow detention time= 5.1 min calculated for 0.045 af (100% of inflow) Center-of-Mass det. time= 5.1 min (767.5 - 762.5)								
Volume Invert Avail.Storage Storage Description								
#1 123.00' 472 cf Custom Stage Data (Prismatic)Listed below (Recalc)								
Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet)								
123.00 165 0 0								
124.00 779 472 472								
Device Routing Invert Outlet Devices								
 #1 Primary 123.00' 12.0" Round Culvert L= 69.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 123.00' / 122.50' S= 0.0072 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Discarded 123.00' 2.410 in/hr Exfiltration over Surface area 								
Discarded OutFlow Max=0.02 cfs @ 12.13 hrs HW=123.38' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.02 cfs)								
Primary OutFlow Max=0.48 cfs @ 12.13 hrs HW=123.38' TW=122.15' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.48 cfs @ 2.62 fps)								
Summary for Dond D 2: Infiltration Basin								

Summary for Pond P-2: Infiltration Basin

Inflow Area =	0.570 ac, 32.04% Impervious, Ir	nflow Depth = 0.86" for 1-Year event
Inflow =	0.62 cfs @ 12.11 hrs, Volume=	0.041 af
Outflow =	0.12 cfs @ 12.57 hrs, Volume=	0.041 af, Atten= 80%, Lag= 27.1 min
Discarded =	0.12 cfs @ 12.57 hrs, Volume=	0.041 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	DP-2 : East Low Point	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.28' @ 12.57 hrs Surf.Area= 2,235 sf Storage= 594 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 32.6 min (777.7 - 745.2)

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

Invert	Avail.Stor	rage Stora	ge Description	
122.00'	5,93	B7 cf Custo	om Stage Data (P	rismatic) Listed below (Recalc)
Su	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
	1,944	0	0	
	3,993	5,937	5,937	
outing	Invert	Outlet Devi	ices	
rimary	123.99'			ectangular Weir 2 End Contraction(s)
iscarded	122.00'	2.410 in/hr	r Exfiltration over	Surface area
	122.00' Su	122.00' 5,93 Surf.Area (sq-ft) 1,944 3,993 outing Invert rimary 123.99'	122.00' 5,937 cf Custo Surf.Area Inc.Store (sq-ft) (cubic-feet) 1,944 0 3,993 5,937 outing Invert Outlet Dev rimary 123.99' 15.0' long	122.00'5,937 cfCustom Stage Data (PSurf.AreaInc.StoreCum.Store(sq-ft)(cubic-feet)(cubic-feet)1,944003,9935,9375,937outingInvertOutlet Devicesrimary123.99'15.0' long Sharp-Crested Red

Discarded OutFlow Max=0.12 cfs @ 12.57 hrs HW=122.28' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) **1=Sharp-Crested Rectangular Weir**(Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area	a =	0.271 ac,	4.58% Impervious, Inflo	w Depth = 1.40"	for 1-Year event
Inflow	=	0.41 cfs @	12.09 hrs, Volume=	0.032 af	
Primary	=	0.41 cfs @	12.09 hrs, Volume=	0.032 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area	a =	0.743 ac, 24	4.58% Impervious,	Inflow Depth = 0.0	00" for 1-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000 af,	Atten= 0%, Lag= 0.0 min

Millis Well 3 Proposed Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 Hydro(Type III 24-hr 2-Year Rainfall=3.39" Printed 10/25/2023 CAD Software Solutions LLC Page 9
Runoff by SCS TR	72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=1.87" Tc=6.0 min CN=WQ Runoff=0.15 cfs 0.012 af
SubcatchmentSC-2: Overland to Forebay	Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=1.98" Tc=6.0 min CN=WQ Runoff=0.55 cfs 0.045 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=0.80" Tc=6.0 min CN=WQ Runoff=0.18 cfs 0.015 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=1.77" Tc=6.0 min CN=WQ Runoff=0.51 cfs 0.040 af
Pond P-1: Forebay Discarded=0.02 cfs	Peak Elev=123.43' Storage=127 cf Inflow=0.70 cfs 0.057 af s 0.018 af Primary=0.61 cfs 0.039 af Outflow=0.63 cfs 0.057 af
Pond P-2: Infiltration Basin Discarded=0.13 cfs	Peak Elev=122.39' Storage=829 cf Inflow=0.78 cfs 0.054 af s 0.054 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.054 af
Link DP-1: West Wetlands	Inflow=0.51 cfs 0.040 af Primary=0.51 cfs 0.040 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 acRunoff Volume = 0.111 afAverage Runoff Depth = 1.32"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 1.87" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

A	rea (sf)	CN	Description		
	532	98	Paved park	ing, HSG A	A
	1,256	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	1,568	96	Gravel surfa	ace, HSG A	A
	3,356		Weighted A	verage	
	2,824	71	84.15% Per	vious Area	a de la constante de
	532	98	15.85% Imp	ervious Ar	ea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.55 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay

0.045 af, Depth= 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

A	rea (sf)	CN	Description		
	7,418	98	Paved park	ing, HSG A	4
	4,446	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	11,864		Weighted A	verage	
	4,446	39	37.47% Pe	rvious Area	3
	7,418	98	62.53% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 0.80" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

Type III 24-hr 2-Year Rainfall=3.39" Printed 10/25/2023 LC Page 11

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

A	rea (sf)	CN	Description				
	7,531	32	2 Woods/grass comb., Good, HSG A				
	7,531	32	100.00% P	ervious Are	ea		
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description		
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 0.51 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.040 af, Depth= 1.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

	Area (sf)	CN	Description		
*	540	98	Impervious,	HSG A	
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	6,525	96	Gravel surfa	ace, HSG A	٩
	11,789		Weighted A	verage	
	11,249	72	95.42% Per	vious Area	a de la constante de
	540	98	4.58% Impe	ervious Are	a
(m	Tc Length hin) (feet)	Slop (ft/f		Capacity (cfs)	Description
<u> </u>	6.0	(10)	(1/300)	(013)	Direct Entry, Tc Min
	0.0				Direct Lintry, To Will

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 1.95" for 2-Year event Inflow = 0.70 cfs @ 12.09 hrs, Volume= 0.057 af Outflow = 0.63 cfs @ 12.13 hrs, Volume= 0.057 af, Atten= 10%, Lag= 2.3 min Discarded = 0.02 cfs @ 12.13 hrs, Volume= 0.018 af Primary = 0.61 cfs @ 12.13 hrs, Volume= 0.039 af Routed to Pond P-2 : Infiltration Basin 0.039 af						
		Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Surf.Area= 428 sf Storage= 127 cf				
Plug-Flow detention Center-of-Mass de		lculated: outflow precedes inflow) ו (763.5 - 758.3)				
Volume Inve	ert Avail.Stor	rage Storage Description				
#1 123.0	00' 47	72 cf Custom Stage Data (Prismatic)Listed below (Recalc)				
Elevation	Surf.Area	Inc.Store Cum.Store				
(feet)	(sq-ft)	(cubic-feet) (cubic-feet)				
123.00	165	0 0				
124.00	779	472 472				
Device Routing		Outlet Devices				
#1 Primary #2 Discarde	123.00' ed 123.00'	L= 69.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= $123.00' / 122.50'$ S= $0.0072' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf				
Discarded OutFlow Max=0.02 cfs @ 12.13 hrs HW=123.42' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.02 cfs)						
Primary OutFlow Max=0.60 cfs @ 12.13 hrs HW=123.42' TW=122.20' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.60 cfs @ 2.77 fps)						
Summary for Pond P-2: Infiltration Basin						

Inflow Area =	0.570 ac, 32.04% Impervious, Inflow	Depth = 1.13" for 2-Year event
Inflow =	0.78 cfs @ 12.11 hrs, Volume=	0.054 af
Outflow =	0.13 cfs @ 12.61 hrs, Volume=	0.054 af, Atten= 83%, Lag= 29.8 min
Discarded =	0.13 cfs @ 12.61 hrs, Volume=	0.054 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	CDP-2 : East Low Point	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.39' @ 12.61 hrs Surf.Area= 2,340 sf Storage= 829 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 45.2 min (790.0 - 744.8)

Prepared by Kleinfelder

Volume	Invert	Avail.Sto	rage Storage	ge Description	
#1	122.00'	5,93	B7 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)	
Elevation (feet 122.00 124.00)))	rf.Area (sq-ft) 1,944 3,993	Inc.Store (cubic-feet) 0 5.937	Cum.Store (cubic-feet) 0 5.937	
Device #1	Routing Primary Discarded	Invert 123.99' 122.00'	Outlet Device 15.0' long S	,	

Discarded OutFlow Max=0.13 cfs @ 12.61 hrs HW=122.39' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Are	a =	0.271 ac,	4.58% Impervious, Inflow	Depth = 1.77"	for 2-Year event
Inflow	=	0.51 cfs @	12.09 hrs, Volume=	0.040 af	
Primary	=	0.51 cfs @	12.09 hrs, Volume=	0.040 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Are	a =	0.743 ac, 24	4.58% Impervious, In	flow Depth = 0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Millis Well 3 Proposed Prepared by Kleinfelder <u>HydroCAD® 10.20-2f s/n 00759 © 2022 Hydro</u>	Type III 24-hr 5-Year Rainfall=4.42" Printed 10/25/2023 CAD Software Solutions LLC Page 14
Runoff by SCS TF	72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q I method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=2.55" Tc=6.0 min CN=WQ Runoff=0.20 cfs 0.016 af
SubcatchmentSC-2: Overland to Forebay	Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=2.65" Tc=6.0 min CN=WQ Runoff=0.72 cfs 0.060 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.12" Tc=6.0 min CN=WQ Runoff=0.23 cfs 0.021 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=2.42" Tc=6.0 min CN=WQ Runoff=0.67 cfs 0.055 af
Pond P-1: Forebay Discarded=0.03 cfs	Peak Elev=123.50' Storage=160 cf Inflow=0.92 cfs 0.077 af s 0.020 af Primary=0.81 cfs 0.056 af Outflow=0.83 cfs 0.077 af
Pond P-2: Infiltration Basin Discarded=0.14 cfs	Peak Elev=122.55' Storage=1,229 cf Inflow=1.03 cfs 0.077 af s 0.077 af Primary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.077 af
Link DP-1: West Wetlands	Inflow=0.67 cfs 0.055 af Primary=0.67 cfs 0.055 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 acRunoff Volume = 0.152 afAverage Runoff Depth = 1.80"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Runoff = 0.20 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay

0.016 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

A	rea (sf)	CN	Description			
	532	98	Paved park	ing, HSG A	A	
	1,256	39	Pasture/gra	ssland/rang	ge, Good, HSG A	
	1,568	96	Gravel surfa	Gravel surface, HSG A		
	3,356		Weighted A	verage		
	2,824	71	84.15% Per	vious Area	a de la constante de	
	532	98	15.85% Imp	ervious Ar	ea	
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description	
6.0					Direct Entry, Tc Min	

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.72 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay

0.060 af, Depth= 2.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

Are	ea (sf)	CN	Description				
	7,418	98	Paved park	ing, HSG A	Α		
	4,446	39	Pasture/grassland/range, Good, HSG A				
1	1,864		Weighted A	verage			
	4,446	39	37.47% Pe	rvious Area	a		
	7,418	98	62.53% Imp	pervious Ar	rea		
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description		
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.021 af, Depth= 1.12" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

Type III 24-hr 5-Year Rainfall=4.42" Printed 10/25/2023 LC Page 16

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% P	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Depth= 0.00" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

A	rea (sf)	CN	Description		
	7,531	32	Woods/gras	ss comb., G	Good, HSG A
	7,531	32	100.00% P	ervious Are	ea
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 0.67 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.055 af, Depth= 2.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

	Area (sf)	CN	Description		
*	540	98	Impervious,	HSG A	
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	6,525	96	Gravel surfa	ace, HSG A	٩
	11,789		Weighted A	verage	
	11,249	72	95.42% Per	vious Area	a de la constante de
	540	98	4.58% Impe	ervious Are	a
(m	Tc Length hin) (feet)	Slop (ft/f		Capacity (cfs)	Description
<u> </u>	/ /	(10)		(013)	Direct Entry, To Min
	6.0				Direct Entry, Tc Min

Summary for Pond P-1: Forebay

	ac, 52.23% Impervious, s @ 12.09 hrs, Volume	•	for 5-Year event				
			en= 9%, Lag= 2.3 min				
	s @ 12.12 hrs, Volume						
	s @ 12.12 hrs, Volume:						
Routed to Pond P-2 : In							
Routing by Dyn-Stor-Ind m	ethod. Time Span= 0.00-	72.00 hrs. dt= 0.05 hrs					
Peak Elev= 123.50' @ 12.1							
	-	5					
Plug-Flow detention time=	5.3 min calculated for 0.0)77 af (100% of inflow)					
Center-of-Mass det. time=		(, , , , , , , , , , , , , , , , , , ,					
	· · · · · · · · · · · · · · · · · · ·						
Volume Invert Av	/ail.Storage Storage De	escription					
#1 123.00'	472 cf Custom St	tage Data (Prismatic)L	isted below (Recalc)				
		0 ()	· · · · ·				
Elevation Surf.Area	a Inc.Store	Cum.Store					
(feet) (sq-ft	t) (cubic-feet)	(cubic-feet)					
123.00 16	5 0	0					
124.00 779	9 472	472					
Device Routing	Invert Outlet Devices						
#1 Primary 1	23.00' 12.0" Round C	ulvert					
, s		nitered to conform to fil	l. Ke= 0.700				
	Inlet / Outlet Inve	ert= 123.00' / 122.50' S	S= 0.0072 '/' Cc= 0.900				
	n= 0.013 Corruc	gated PE, smooth interio	or, Flow Area= 0.79 sf				
#2 Discarded 12		Itration over Surface a					
Discarded OutFlow Max=	Discarded OutFlow Max=0.03 cfs @ 12.12 hrs HW=123.49' (Free Discharge)						
1 -2=Exfiltration (Exfiltrati	0.00 013 @ 12.12 113 11	V=123.49 (Free Discr	laiye)				
		V=123.49 (Free Discr	laige)				
Primary OutFlow Max-0	ion Controls 0.03 cfs)		- /				

Primary OutFlow Max=0.79 cfs @ 12.12 hrs HW=123.49' TW=122.30' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.79 cfs @ 2.97 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area =	0.570 ac, 32.04%	6 Impervious, Inflow D)epth = 1.62" for 5-Year e	event			
Inflow =	1.03 cfs @ 12.11	hrs, Volume=	0.077 af				
Outflow =	0.14 cfs @ 12.68	8 hrs, Volume=	0.077 af, Atten= 86%, Lag	g= 33.8 min			
Discarded =	0.14 cfs @ 12.68	8 hrs, Volume=	0.077 af	-			
Primary =	0.00 cfs @ 0.00) hrs, Volume=	0.000 af				
Routed to Link DP-2 : East Low Point							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.55' @ 12.68 hrs Surf.Area= 2,510 sf Storage= 1,229 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 65.4 min (819.0 - 753.6)

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	122.00'	5,93	37 cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)	Su	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
122.00		1,944	0	0	
124.00		3,993	5,937	5,937	
Device R	outing	Invert	Outlet Device	es	
	rimary	123.99'	-		ectangular Weir 2 End Contraction(s)
#2 D	iscarded	122.00'	2.410 in/hr E	Exfiltration over	Surface area

Discarded OutFlow Max=0.14 cfs @ 12.68 hrs HW=122.55' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) **1=Sharp-Crested Rectangular Weir**(Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area	a =	0.271 ac,	4.58% Impervious, Inflo	w Depth = 2.42"	for 5-Year event
Inflow	=	0.67 cfs @	12.09 hrs, Volume=	0.055 af	
Primary	=	0.67 cfs @	12.09 hrs, Volume=	0.055 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Are	a =	0.743 ac, 24.58% Impervious, Inflow Depth = 0.00" for 5-Year event	:
Inflow	=	0.00 cfs @ 24.00 hrs, Volume= 0.000 af	
Primary	=	0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0	min

Millis Well 3 Proposed Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 Hydro	Type III 24-hr 10-Year Rainfall=5.28"Printed 10/25/2023CAD Software Solutions LLCPage 19
Runoff by SCS TF	-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q I method - Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=3.14" Tc=6.0 min CN=WQ Runoff=0.24 cfs 0.020 af
SubcatchmentSC-2: Overland to Forebay	Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=3.25" Tc=6.0 min CN=WQ Runoff=0.86 cfs 0.074 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.46" Tc=6.0 min CN=WQ Runoff=0.28 cfs 0.027 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.05" Tc=6.0 min CN=32 Runoff=0.00 cfs 0.001 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=3.00" Tc=6.0 min CN=WQ Runoff=0.81 cfs 0.068 af
Pond P-1: Forebay Discarded=0.03 cfs	Peak Elev=123.56' Storage=188 cf Inflow=1.10 cfs 0.094 af s 0.022 af Primary=0.97 cfs 0.072 af Outflow=1.00 cfs 0.094 af
Pond P-2: Infiltration Basin Discarded=0.15 cfs	Peak Elev=122.70' Storage=1,612 cf Inflow=1.23 cfs 0.099 af s 0.099 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs 0.099 af
Link DP-1: West Wetlands	Inflow=0.81 cfs 0.068 af Primary=0.81 cfs 0.068 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.001 af Primary=0.00 cfs 0.001 af

Total Runoff Area = 1.013 acRunoff Volume = 0.189 afAverage Runoff Depth = 2.24"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Runoff = 0.24 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 3.14" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

A	rea (sf)	CN	Description			
	532	98	Paved park	ing, HSG A	A	
	1,256	39	Pasture/gra	ssland/rang	ge, Good, HSG A	
	1,568	96	Gravel surfa	ace, HSG A	A	
	3,356		Weighted Average			
	2,824	71	84.15% Pervious Area			
	532	98	15.85% Imp	ervious Ar	ea	
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description	
6.0					Direct Entry, Tc Min	

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.86 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay 0.074 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

Area (sf)	CN	Description			
7,418	98	Paved parking, HSG A			
4,446	39	Pasture/grassland/range, Good, HSG A			
11,864		Weighted Average			
4,446	39	37.47% Pervious Area			
7,418	98	62.53% Impervious Area			
Tc Length (min) (feet)	Sloj (ft/				
6.0		Direct Entry, Tc Min			

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.027 af, Depth= 1.46" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

 Type III 24-hr
 10-Year Rainfall=5.28"

 Printed
 10/25/2023

 LLC
 Page 21

Prepared by Kleinfelder	
HydroCAD® 10.20-2f s/n 00759	© 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 16.79 hrs, Volume= 0.001 af, Depth= 0.05" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

Area	(sf) CN	Description					
7,	531 32	32 Woods/grass comb., Good, HSG A					
7,	531 32	32 100.00% Pervious Area					
	ngth Slor feet) (ft/		Capacity (cfs)	Description			
6.0				Direct Entry, Tc Min			

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 0.81 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.068 af, Depth= 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

	Area (sf)	CN	Description				
*	540	98	Impervious,	HSG A			
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	6,525	96	Gravel surfa	ace, HSG A	A		
	11,789		Weighted Average				
	11,249	72	95.42% Per	vious Area	a de la constante de		
	540	98	4.58% Impe	ervious Are	a		
T (min	5	Slop (ft/f	,	Capacity (cfs)	Description		
6.	0				Direct Entry, Tc Min		

Summary for Pond P-1: Forebay

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to Pe	1.10 cfs @ 1 1.00 cfs @ 1 0.03 cfs @ 1	23% Impervious, 2.09 hrs, Volume 2.12 hrs, Volume 2.12 hrs, Volume 2.12 hrs, Volume n Basin	= 0.094 = 0.094 = 0.022	af af, Atten= af	10-Year event 9%, Lag= 2.3 min				
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.56' @ 12.12 hrs Surf.Area= 508 sf Storage= 188 cf								
	Plug-Flow detention time= 5.3 min calculated for 0.094 af (100% of inflow) Center-of-Mass det. time= 5.4 min (762.1 - 756.7)								
Volume li	nvert Avail.Sto	rage Storage De	escription						
#1 12	3.00' 47	72 cf Custom S	tage Data (Pris	smatic)Liste	d below (Recalc)				
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)						
123.00	165	0	0						
124.00	779	472	472						
Device Routir	0	Outlet Devices							
#1 Primary 123.00' 12.0" Round Culvert L= 69.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 123.00' / 122.50' S= 0.0072 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf									
#2 Disca	rded 123.00'	2.410 in/hr Exfi	Itration over S	urface area	1				
Discarded OutFlow Max=0.03 cfs @ 12.12 hrs HW=123.55' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.03 cfs)									
			400 EEL TMA 4						

Primary OutFlow Max=0.95 cfs @ 12.12 hrs HW=123.55' TW=122.38' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.95 cfs @ 3.10 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area =	0.570 ac, 32.04% Impervious, Inflow	Depth = 2.09" for 10-Year event
Inflow =	1.23 cfs @ 12.11 hrs, Volume=	0.099 af
Outflow =	0.15 cfs @ 12.81 hrs, Volume=	0.099 af, Atten= 88%, Lag= 41.9 min
Discarded =	0.15 cfs @ 12.81 hrs, Volume=	0.099 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	DP-2 : East Low Point	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.70' @ 12.81 hrs Surf.Area= 2,661 sf Storage= 1,612 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 85.2 min (845.4 - 760.2)

Prepared by Kleinfelder

Volume	Invert	Avail.Stor	rage Storage	e Description	
#1	122.00'	5,93	B7 cf Custon	m Stage Data (Prismatic) Listed below (Recalc)	
Elevatio (fee 122.0 124.0	et) 00	ırf.Area <u>(sq-ft)</u> 1,944 3,993	Inc.Store (cubic-feet) 0 5,937	Cum.Store (cubic-feet) 0 5,937	
Device #1 #2	Routing Primary Discarded	Invert 123.99' 122.00'	•	ces Sharp-Crested Rectangular Weir 2 End Contraction(s) Exfiltration over Surface area	

Discarded OutFlow Max=0.15 cfs @ 12.81 hrs HW=122.70' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.15 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Are	a =	0.271 ac,	4.58% Impervious, Inflow	Depth = 3.00"	for 10-Year event
Inflow	=	0.81 cfs @	12.09 hrs, Volume=	0.068 af	
Primary	=	0.81 cfs @	12.09 hrs, Volume=	0.068 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area =	0.743 ac, 24.58% Impervious, Inflow [Depth = 0.01" for 10-Year event
Inflow =	0.00 cfs @ 16.79 hrs, Volume=	0.001 af
Primary =	0.00 cfs @ 16.79 hrs, Volume=	0.001 af, Atten= 0%, Lag= 0.0 min

Millis Well 3 Proposed Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 Hydro	Type III 24-hr 25-Year Rainfall=6.45"Printed 10/25/2023CAD Software Solutions LLCPage 24
Runoff by SCS TF	-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q I method . Pond routing by Dyn-Stor-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=3.99" Tc=6.0 min CN=WQ Runoff=0.30 cfs 0.026 af
SubcatchmentSC-2: Overland to Forebay	Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=4.10" Tc=6.0 min CN=WQ Runoff=1.06 cfs 0.093 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.99" Tc=6.0 min CN=WQ Runoff=0.36 cfs 0.037 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.21" Tc=6.0 min CN=32 Runoff=0.00 cfs 0.003 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=3.83" Tc=6.0 min CN=WQ Runoff=1.01 cfs 0.086 af
Pond P-1: Forebay Discarded=0.03 cfs	Peak Elev=123.63' Storage=227 cf Inflow=1.36 cfs 0.119 af s 0.023 af Primary=1.20 cfs 0.095 af Outflow=1.23 cfs 0.119 af
Pond P-2: Infiltration Basin Discarded=0.16 cfs	Peak Elev=122.93' Storage=2,241 cf Inflow=1.55 cfs 0.132 af s 0.132 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.132 af
Link DP-1: West Wetlands	Inflow=1.01 cfs 0.086 af Primary=1.01 cfs 0.086 af
Link DP-2: East Low Point	Inflow=0.00 cfs 0.003 af Primary=0.00 cfs 0.003 af

Total Runoff Area = 1.013 acRunoff Volume = 0.245 afAverage Runoff Depth = 2.90"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Runoff = 0.30 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 3.99" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

A	rea (sf)	CN	Description		
	532	98	Paved park	ing, HSG A	A
	1,256	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	1,568	96	Gravel surfa	ace, HSG A	٩
	3,356		Weighted A	verage	
	2,824	71	84.15% Per	vious Area	3
	532	98	15.85% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 1.06 cfs @ 12.09 hrs, Volume= Routed to Pond P-1 : Forebay

Type III 24-hr 25-Year Rainfall=6.45"

0.093 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Area (sf)	CN	Description
7,418	98	Paved parking, HSG A
4,446	39	Pasture/grassland/range, Good, HSG A
11,864		Weighted Average
4,446	39	37.47% Pervious Area
7,418	98	62.53% Impervious Area
Tc Length (min) (feet)	Sloj (ft/	
6.0		Direct Entry, Tc Min

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.36 cfs @ 12.10 hrs, Volume= 0.037 af, Depth= 1.99" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

 Type III 24-hr
 25-Year Rainfall=6.45"

 Printed
 10/25/2023

 LLC
 Page 26

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% P	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 13.72 hrs, Volume= 0.003 af, Depth= 0.21" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

A	rea (sf)	CN	Description			
	7,531	32	Woods/gras	ss comb., G	Good, HSG A	
	7,531	32	100.00% P	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, Tc Min	

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 1.01 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.086 af, Depth= 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

	Area (sf)	CN	Description		
*	540	98	Impervious,	HSG A	
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	6,525	96	Gravel surfa	ace, HSG A	A
	11,789		Weighted A	verage	
	11,249	72	95.42% Per	vious Area	a de la constante de
	540	98	4.58% Impe	ervious Are	a
T (min	5	Slop (ft/f	,	Capacity (cfs)	Description
6.	0				Direct Entry, Tc Min

Summary for Pond P-1: Forebay

Inflow Area = Inflow = Outflow = Discarded = Primary = Routed to Pon	Inflow = 1.36 cfs @ 12.09 hrs, Volume= 0.119 af Outflow = 1.23 cfs @ 12.13 hrs, Volume= 0.119 af, Atten= 10%, Lag= 2.4 min Discarded = 0.03 cfs @ 12.13 hrs, Volume= 0.023 af						
Routing by Dyn-S Peak Elev= 123.6							
Plug-Flow detenti Center-of-Mass d				of inflow)			
Volume Inv	ert Avail.Sto	rage Storage D	escription				
#1 123.	00' 47	72 cf Custom S	Stage Data (Pr	rismatic)Li	isted below (Recalc)		
Elevation	Surf.Area	Inc.Store	Cum.Store				
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)				
123.00	165	0					
124.00	779	472	472				
Device Routing	Invert	Outlet Devices					
#1 Primary	123.00'	L= 69.0' CPP, Inlet / Outlet Inv	mitered to cor /ert= 123.00' /	122.50' \$	l, Ke= 0.700 S= 0.0072 '/' Cc= 0.900 or, Flow Area= 0.79 sf		
#2 Discarde	ed 123.00'	2.410 in/hr Exf	•				
Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=123.62' (Free Discharge) ←2=Exfiltration (Exfiltration Controls 0.03 cfs)							

Primary OutFlow Max=1.17 cfs @ 12.13 hrs HW=123.62' TW=122.51' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.17 cfs @ 3.25 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area =	0.570 ac, 32.04% Impervious, Inflow	Depth = 2.78" for 25-Year event
Inflow =	1.55 cfs @ 12.12 hrs, Volume=	0.132 af
Outflow =	0.16 cfs @ 13.02 hrs, Volume=	0.132 af, Atten= 90%, Lag= 54.2 min
Discarded =	0.16 cfs @ 13.02 hrs, Volume=	0.132 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	DP-2 : East Low Point	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.93' @ 13.02 hrs Surf.Area= 2,893 sf Storage= 2,241 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 117.0 min (882.8 - 765.8)

Prepared by Kleinfelder

Volume	Invert	Avail.Sto	rage Storage	e Description
#1	122.00'	5,93	37 cf Custon	m Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 122.0 124.0	t) 0	rf.Area (sq-ft) 1,944 3,993	Inc.Store (cubic-feet) 0 5,937	Cum.Store (cubic-feet) 0 5,937
Device #1 #2	Routing Primary Discarded	Invert 123.99' 122.00'	•	ces Sharp-Crested Rectangular Weir 2 End Contraction(s) Exfiltration over Surface area

Discarded OutFlow Max=0.16 cfs @ 13.02 hrs HW=122.93' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Are	a =	0.271 ac,	4.58% Impervious, Inflow	Depth = 3.83"	for 25-Year event
Inflow	=	1.01 cfs @	12.09 hrs, Volume=	0.086 af	
Primary	=	1.01 cfs @	12.09 hrs, Volume=	0.086 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Are	a =	0.743 ac, 24.58% Impervious, Inflow Depth =	= 0.05"	for 25-Year event
Inflow	=	0.00 cfs @ 13.72 hrs, Volume= 0.00	3 af	
Primary	=	0.00 cfs @ 13.72 hrs, Volume= 0.00	3 af, Att	en= 0%, Lag= 0.0 min

Millis Well 3 Proposed Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 Hydro		100-Year Rainfall=8.27" Printed 10/25/2023 Page 29
Runoff by SCS TF	72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-Q method - Pond routing by Dyn-Sto	r-Ind method
SubcatchmentSC-1: Overland to West	Runoff Area=3,356 sf 15.85% Imper Tc=6.0 min CN=WQ	rvious Runoff Depth=5.39" Runoff=0.41 cfs 0.035 af
SubcatchmentSC-2: Overland to Forebay		rvious Runoff Depth=5.50" Runoff=1.45 cfs 0.125 af
SubcatchmentSC-3: Overland to Basin	Runoff Area=9,595 sf 0.00% Imper Tc=6.0 min CN=WQ	rvious Runoff Depth=2.97" Runoff=0.60 cfs 0.054 af
SubcatchmentSC-4: Basin Berm and	Runoff Area=7,531 sf 0.00% Imper Tc=6.0 min CN=32	rvious Runoff Depth=0.64" Runoff=0.05 cfs 0.009 af
SubcatchmentSC-5: Overland to West	Runoff Area=11,789 sf 4.58% Imper Tc=6.0 min CN=WQ	rvious Runoff Depth=5.19" Runoff=1.38 cfs 0.117 af
Pond P-1: Forebay Discarded=0.04 cfs	Peak Elev=123.76' Storage=304 c s 0.027 af Primary=1.62 cfs 0.133 af	
Pond P-2: Infiltration Basin Discarded=0.18 cfs	Peak Elev=123.31' Storage=3,415 c s 0.187 af Primary=0.00 cfs 0.000 af	
Link DP-1: West Wetlands		Inflow=1.38 cfs 0.117 af Primary=1.38 cfs 0.117 af
Link DP-2: East Low Point		Inflow=0.05 cfs 0.009 af Primary=0.05 cfs 0.009 af

Total Runoff Area = 1.013 acRunoff Volume = 0.340 afAverage Runoff Depth = 4.03"80.76% Pervious = 0.818 ac19.24% Impervious = 0.195 ac

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.035 af, Depth= 5.39" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

A	rea (sf)	CN	Description		
	532	98	Paved park	ing, HSG A	4
	1,256	39	Pasture/gra	ssland/rang	ige, Good, HSG A
	1,568	96	Gravel surfa	ace, HSG A	Α
	3,356		Weighted A	verage	
	2,824	71	84.15% Per	vious Area	3
	532	98	15.85% Imp	ervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 1.45 cfs @ 12.09 hrs, Volume= 0.125 af, Depth= 5.50" Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

A	rea (sf)	CN	Description		
	7,418	98	Paved park	ing, HSG A	N
	4,446	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	11,864		Weighted A	verage	
	4,446	39	37.47% Pei	vious Area	
	7,418	98	62.53% Imp	pervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.60 cfs @ 12.10 hrs, Volume= 0.054 af, Depth= 2.97" Routed to Pond P-2 : Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

Millis Well 3 Proposed

 Type III 24-hr
 100-Year Rainfall=8.27"

 Printed
 10/25/2023

 is LLC
 Page 31

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	9,595		Weighted A	verage	
	9,595	54	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, Tc Min

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.05 cfs @ 12.34 hrs, Volume= 0.009 af, Depth= 0.64" Routed to Link DP-2 : East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

A	rea (sf)	CN	Description			
	7,531	32	Woods/gras	ss comb., G	Good, HSG A	
	7,531	32	100.00% P	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, Tc Min	

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 1.38 cfs @ 12.09 hrs, Volume= Routed to Link DP-1 : West Wetlands 0.117 af, Depth= 5.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

	Area (sf)	CN	Description		
*	540	98	Impervious,	HSG A	
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A
	6,525	96	Gravel surfa	ace, HSG A	A
	11,789		Weighted A	verage	
	11,249	72	95.42% Per	vious Area	3
	540	98	4.58% Impe	ervious Are	a
To (min	5	Slop (ft/f		Capacity (cfs)	Description
6.0	C				Direct Entry, Tc Min

Summary for Pond P-1: Forebay

Inflow = 1.85 cfs @ Outflow = 1.66 cfs @ Discarded = 0.04 cfs @	52.23% Impervious, Inflow Depth = 5.47" for 100-Year event 12.09 hrs, Volume= 0.159 af 12.13 hrs, Volume= 0.159 af, Atten= 11%, Lag= 2.5 min 12.13 hrs, Volume= 0.027 af 12.13 hrs, Volume= 0.133 af			
	d, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs s Surf.Area= 633 sf Storage= 304 cf			
Plug-Flow detention time= 6.5 min calculated for 0.159 af (100% of inflow) Center-of-Mass det. time= 6.6 min(763.5 - 757.0)				
Volume Invert Avail.	Storage Storage Description			
#1 123.00'	472 cf Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)			
123.00 165	0 0			
124.00 779	472 472			
0	rt Outlet Devices			
#1 Primary 123.0	0' 12.0" Round Culvert L= 69.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 123.00' / 122.50' S= 0.0072 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			
#2 Discarded 123.0	e			
Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=123.75' (Free Discharge) -2=Exfiltration (Exfiltration Controls 0.03 cfs)				

Primary OutFlow Max=1.59 cfs @ 12.13 hrs HW=123.75' TW=122.74' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.59 cfs @ 3.48 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area =	0.570 ac, 32.04% Impervious, Inflow	Depth = 3.95" for 100-Year event
Inflow =	2.19 cfs @ 12.12 hrs, Volume=	0.187 af
Outflow =	0.18 cfs @ 13.37 hrs, Volume=	0.187 af, Atten= 92%, Lag= 75.3 min
Discarded =	0.18 cfs @ 13.37 hrs, Volume=	0.187 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	DP-2 : East Low Point	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.31' @ 13.37 hrs Surf.Area= 3,283 sf Storage= 3,415 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 171.8 min (942.3 - 770.5)

Millis Well 3 Proposed

Prepared by Kleinfelder

Volume	Invert	Avail.Stor	rage Storag	ge Description
#1	122.00'	5,93	37 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee 122.0 124.0	t) 00	ırf.Area <u>(sq-ft)</u> 1,944 3,993	Inc.Store (cubic-feet) 0 5,937	Cum.Store (cubic-feet) 0 5,937
Device #1	Routing Primary	Invert 123.99'	Outlet Devic	ces Sharp-Crested Rectangular Weir 2 End Contraction(s)
#2	Discarded	122.00'	•	Exfiltration over Surface area

Discarded OutFlow Max=0.18 cfs @ 13.37 hrs HW=123.31' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area =	0.271 ac,	4.58% Impervious, Inflow	Depth = 5.19"	for 100-Year event
Inflow =	1.38 cfs @	12.09 hrs, Volume=	0.117 af	
Primary =	1.38 cfs @	12.09 hrs, Volume=	0.117 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area =	0.743 ac, 24.58% Impervious, Inflow	Depth = 0.15" for 100-Year event
Inflow =	0.05 cfs @ 12.34 hrs, Volume=	0.009 af
Primary =	0.05 cfs @ 12.34 hrs, Volume=	0.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Appendix D Stormwater Operation and Maintenance Plan

STORMWATER OPERATION AND MAINTANENCE PLAN (O&M)

Owner/	
Operator:	Town of Millis Public Works/ Highway Department 900 Main Street, Room 204 Millis, MA 02054
Prepared by:	Kleinfelder 1 Beacon Street, Suite 8100 Boston, MA 02118

The following operation and maintenance practices will be performed on the proposed stormwater system by the Owner (Town of Millis).

Item location on site	Frequency	What to do
Infiltration Basin	1st & 2nd Year Post Construction Every 6 months, and	Inspections should focus on: Checking the infiltration basin surface for
	after a major storm Inspection frequency can be reduced to annual following 2 nd year post- construction	standing water or accumulated sediments. Checking the sedimentation chamber or forebay for sediment accumulation, trash, and debris. Inspect to be certain the sedimentation
	monitoring.	forebay drains within 24 to 72 hrs. Checking inlets, outlets, and overflow spillway for blockage, structural integrity, and evidence of erosion. Removal of decaying vegetation, litter, and debris.
Paved surfaces	Every Six Months or as needed	Sweep and remove sediment from paved wearing surfaces at the site.

Table OM-1 Summary of Stormwater System Operation & Maintenance Tasks Listed By Item

Table OM-1 – Continued

Riprap Apron at Pressure Relief Outlet and Overflow Weir	Every Six Months, and after major storms	Inspect apron for excessive sediment accumulation, eroding slopes, rilling or gullying, repair and clean as necessary.
	Once every 4 years	The apron should be cleaned of vegetation.
Rip rap aprons	Annually, and after major storms	Inspect aprons after major storm events or at a minimum annually. Repair as necessary.
At pipe outlets	Annually	Cleaning and remove debris from apron. Repair as necessary.
Water Conveyance	Semi-annually, and	Inspect swales after major storm event. Clean
Swales	after major storms	debris, and repair as necessary
	Annually	Cleaning and remove debris from swales.
		Repair as necessary.

Table OM-2 Annual Checklist of Stormwater System Operation & Maintenance Tasks Listed By

 Frequency.

Frequency	Item location on site	What to do	Date completed	Notes
Every Six Months	Paved surfaces	Sweep and remove sediment from paved surfaces on a semi- annual basis.		
	Riprap Aprons at Pressure Relief Outlet, Drain Outlet, and Overflow Weir	Inspect riprap aprons and Overflow Weir for excessive sediment accumulation, eroding slopes, rilling or gullying, repair and clean as necessary		
	Water Conveyance Swale	Inspect and remove all accumulated sediment and debris.		

♦♦♦ These inspections should also be performed after all major storms (more than 3.5 inches of rain in a 24-hour period).

Frequency	Item location on site	What to do	Date completed	Notes
Every six months	Infiltration Basin	 Ist & 2nd Year Post Construction Every 6 months, and after a major storm Inspection frequency can be reduced to annual following 1st and 2nd year post- construction monitoring. Remove any accumulated sediment deposits. Use light equipment to remove top layer without compacting underlying area. Mow the area around the detention basin. Remove all clippings after mowing. 		Inspections should focus on: Checking the detention basin surface for standing water and accumulated sediments. Checking the sedimentation chamber or forebay for sediment accumulation, trash, and debris. Inspect to be certain the sedimentation forebay drains within 24 to 72 hrs. Checking inlets, outlets, and overflow spillway for blockage, structural integrity, and evidence of erosion. Removal of decaying vegetation, litter, and debris.

Table OM-2 - Continued

••• These inspections should also be performed after all major storms (more than 3.5 inches of rain in a 24-hour period).

STORMWATER MANAGEMENT LONG TERM POLLUTION PREVENTION PLAN (LTPPP)

Owner/

Operators: Town of Millis Public Works/Highway Department 900 Main Street, Room 204 Millis, MA 02054

Prepared by: Kleinfelder 1 Beacon Street, Suite 8100 Boston, MA 02118

A. MATERIALS MANAGEMENT PRACTICES

The following are the material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff. The Owner and Operator will be responsible for ensuring that these procedures are followed:

1. Good Housekeeping

The following good housekeeping practices will be followed onsite:

- a) An effort will be made to store only enough products required to do the job.
- b) All materials stored onsite will be stored in a neat, orderly manner and, if possible, under a roof or in a containment area. At a minimum, all containers will be stored with their lids on when not in use. Drip pans shall be provided under all dispensers.
- c) Products will be kept in their original containers with the original manufacturer's label in legible condition.
- d) Substances will not be mixed with one another unless recommended by the manufacturer.
- e) Whenever possible, all of a product will be used up before disposing of the container.
- f) Manufacturer's recommendations for proper use and disposal will be followed.
- g) The Operator will be responsible for daily inspections for windblown litter and to ensure proper use and disposal of materials. Collection of all windblown litter will be deposited in an appropriate solid waste container.
- h) The Operator will be responsible for periodic street sweeping on an as need basis for all paved wearing surfaces on site. At a minimum sweeping shall be performed on a quarterly basis.

2. Hazardous Substances

These practices will be used to reduce the risks associated with Hazardous Substances. Material Safety Data Sheets (MSDS's) for each product with hazardous properties that is used at the Site will be obtained and used for the proper management of potential wastes that may result from these products. An MSDS will be posted in the immediate area where such product is stored and/or used and another copy of each MSDS will be maintained in the operations office at the Site. Each employee who must handle a Hazardous Substance will be instructed on the use of MSDS sheets for the product he/she is using, particularly regarding spill control techniques.

- a) Products will be kept in original containers with the original labels in legible condition.
- b) Original labels and MSDS's will be procured and used for each product.
- c) If surplus product must be disposed manufacturer's and local/state/federal required methods for proper disposal must be followed.
- 3. Hazardous Waste

It is imperative that all Hazardous Waste be properly identified and handled in accordance with all applicable Hazardous Waste Standards, including the storage, transport and disposal of the Hazardous Wastes. There are significant penalties for the improper handling of Hazardous Wastes. It is important that the Owner/Operator seeks appropriate assistance in making the determination of whether a substance or material is a Hazardous Waste. For example, Hazardous Waste may include certain Hazardous Substances, as well as pesticides, paints, paint solvents, cleaning solvents, pesticides, contaminated soils, and other materials, substances or chemicals that have been discarded (or are to be discarded) as being out-of-date, contaminated, or otherwise unusable, and can include the containers for those substances; other materials and substances can also be or become Hazardous Wastes, however. The Owner/Operator is also responsible for ensuring that all site personnel are instructed as to these Hazardous Waste requirements and also that the requirements are being followed.

4. Product Specific Practices

The following product specific practices will be followed on the site:

Petroleum Products

All onsite vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers which are clearly labeled. Drip pans shall be provided for all dispensers. Any asphalt substances used onsite will be applied according to the manufacturer's recommendations.

Fertilizers

Fertilizers will be applied only in the minimum amounts recommended by the manufacturer. Fertilizer will not be stored on-site on a long-term basis. All temporary storage of fertilizer will be in a covered container. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

Paints, Paint Solvents, and Cleaning Solvents.

All containers will be tightly sealed and stored when not in use. Excess paint and solvents will not be discharged to the storm sewer system but will be properly disposed of according to manufacturer's instructions or federal, state, and local regulations.

5. Solid Wastes

All waste materials will be collected and stored in a covered or enclosed containers and/or securely contained metal dumpsters or compactors. The containers will comply with all local and state solid waste management regulations.

B. SPILL PREVENTION

The Owner will train all personnel in the proper handling and cleanup of spilled Hazardous Substances or Oil. No spilled Hazardous Substances or Oil will be allowed to come in contact with stormwater discharges. If such contact occurs, the storm water discharge will be contained on site until appropriate measures in compliance with state and federal regulations are taken to dispose of such contaminated stormwater. It shall be the responsibility of the Owner to be properly trained, and to train all personnel in spill prevention and clean up procedures.

In order to prevent or minimize the potential for a spill of Hazardous Substances or Oil to come into contact with stormwater, the following steps will be implemented:

- a) All Hazardous Substances or Oil (such as pesticides, petroleum products, fertilizers, detergents, construction chemicals, acids, paints, paint solvents, and cleaning solvents, etc.) will be stored in a secure location, with their lids on, preferably under cover, when not in use.
- b) The minimum practical quantity of all such materials will be kept at the site.
- c) A spill control and containment kit (containing, for example, absorbent materials, acid neutralizing powder, brooms, dust pans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.) will be provided at the storage site.
- d) Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be trained regarding these procedures and the location of the information and cleanup supplies.
- e) It is the Operators responsibility to ensure that all Hazardous Waste discovered or generated at the site is disposed of properly by a licensed hazardous material disposal company. The Operator is responsible for not exceeding Hazardous Waste storage requirements mandated by the EPA or state and local authority.

C. SNOW MANAGEMENT

Snow management will be performed by the Millis Public Works/Highway Department. Snow will be placed and mounded on the side of River Road, as necessary. Melting snow will be allowed to percolate through the vegetated surface. In the spring, when all the snow has melted, all accumulated sediment, and debris remaining shall be cleaned and removed from the site.

Appendix E Water Quality Calculations

Millis Well 3 Proposed

Stage-Area-Storage for Pond P-1: Forebay

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
123.00	165	0	123.52	484	169	
123.01	171	2	123.53	490	174	
123.02	177	3	123.54	497	179	
123.03	183	5	123.55	503	184	
123.04	190	7	123.56	509	189	
123.05	196	9	123.57	515	194	
123.06	202	11	123.58	521	199	
123.07	208	13	123.59	527	204	
123.08	214	15	123.60	533	210	
123.09	220	17	123.61	540	215	
123.10	226	20	123.62	546	220	
123.11 123.12	233 239	22 24	123.63 123.64	552	226 231	
123.12	239 245	24 27		558 564	231	
123.13	245	27 29	123.65 123.66	570	243	
123.14	257	32	123.67	576	243	
123.16	263	34	123.68	583	254	
123.17	269	37	123.69	589	260	
123.18	276	40	123.70	595	266	
123.19	282	42	123.71	601	272	
123.20	288	45	123.72	607	278	
123.21	294	48	123.73	613	284	
123.22	300	51	123.74	619	290	
123.23	306	54	123.75	626	296	
123.24	312	57	123.76	632	303	
123.25	319	60	123.77	638	309	
123.26	325	64	123.78	644	315	
123.27	331	67	123.79	650	322	
123.28	337	70	123.80	656	328	WQV requirement of
123.29	343	74	123.81	662	335	655 cf storage is met
123.30	349 355	77 81	123.82 123.83	668 675	342	
123.31 123.32	361	84	123.83	681	348 355	
123.32	368	88	123.85	687	362	
123.34	374	92	123.86	693	369	
123.35	380	95	123.87	699	376	
123.36	386	99	123.88	705	383	
123.37	392	103	123.89	711	390	
123.38	398	107	123.90	718	397	
123.39	404	111	123.91	724	404	
123.40	411	115	123.92	730	412	
123.41	417	119	123.93	736	419	
123.42	423	123	123.94	742	426	
123.43	429	128	123.95	748	434	
123.44	435	132	123.96	754	441	
123.45	441	136	123.97	761	449	
123.46 123.47	447 454	141	123.98 123.99	767	457 464	
123.47	454 460	145 150	123.99	773 779	464 472	
123.49	466	150	124.00	113	472	
123.50	400	159				
123.51	478	164				
		•				

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
		<u> </u>			
122.00	1,944	0	122.52	2,477	1,149
122.01	1,954	19	122.53	2,487	1,174
122.02	1,964	39	122.54	2,497	1,199
122.03	1,975	59	122.55	2,507	1,224
122.04	1,985	79	122.56	2,518	1,249
122.05	1,995	98	122.57	2,528	1,275
122.06	2,005	118	122.58	2,538	1,300
122.07	2,016	139	122.59	2,548	1,325
122.08	2,026	159	122.60	2,559	1,351
122.09	2,036	179	122.61	2,569	1,376
122.10	2,046	200	122.62	2,579	1,402
122.11	2,057	220	122.63	2,589	1,428
122.12	2,067	241	122.64	2,600	1,454
122.13	2,077	261	122.65	2,610	1,480
122.14	2,087	282	122.66	2,620	1,506
122.15	2,098	303	122.67	2,630	1,532
122.16	2,108	324	122.68	2,641	1,559
122.17	2,118	345	122.69	2,651	1,585
122.18	2,128	367	122.70	2,661	1,612
122.19	2,139	388	122.71	2,671	1,638
122.20	2,149	409	122.72	2,682	1,665
122.21	2,159	431	122.73	2,692	1,692
122.22	2,169	452	122.74	2,702	1,719
122.23	2,180	474	122.75	2,712	1,746
122.24	2,190	496	122.76	2,723	1,773
122.25	2,200	518	122.77	2,733	1,801
122.26	2,210	540	122.78	2,743	1,828
122.27	2,221	562	122.79	2,753	1,855
122.28	2,231	584	122.80	2,764	1,883
122.29	2,241	607	122.81	2,774	1,911
122.30	2,251	629	122.82	2,784	1,939
122.31	2,262	652	122.83	2,794	1,966
122.32	2,272	675	122.84	2,805	1,994
122.33	2,282	697	122.85	2,815	2,023
122.34	2,292	720	122.86	2,825	2,051
122.35	2,303	743	122.87	2,835	2,079
122.36	2,313	766	122.88	2,846	2,107
122.37	2,323	789	122.89	2,856	2,136
122.38	2,333	813	122.90	2,866	2,165
122.39	2,344	836	122.91	2,876	2,193
122.40	2,354	860	122.92	2,887	2,222
122.41	2,364	883	122.93	2,897	2,251
122.42	2,374	907	122.94	2,907	2,280
122.43	2,385	931	122.95	2,917	2,309
122.44	2,395	955	122.96	2,928	2,338
122.45	2,405	979	122.97	2,938	2,368
122.46	2,415	1,003	122.98	2,948	2,397
122.47	2,426	1,000	122.99	2,958	2,427
122.48	2,436	1,051	123.00	2,969	2,456
122.49	2,446	1,076	123.01	2,979	2,486
122.50	2,456	1,100	123.02	2,989	2,516
122.51	2,466	1,125	123.03	2,999	2,546
	_,	1,120	120.00	_,000	2,010

Stage-Area-Storage for Pond P-2: Infiltration Basin

123.55

3,532

4,244

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

		_	1		_
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	<u>(sq-ft)</u>	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
123.04	3,009	2,576	123.56	3,542	4,279
123.05 123.06	3,020	2,606	123.57 123.58	3,552	4,315
123.00	3,030 3,040	2,636 2,667	123.58	3,563 3,573	4,350 4,386
123.07	3,040	2,697	123.60	3,583	4,380
123.09	3,050	2,097	123.60	3,593	4,422
123.10	3,071	2,728	123.62	3,604	4,494
123.10	3,081	2,789	123.63	3,614	4,530
123.12	3,091	2,820	123.64	3,624	4,566
123.12	3,102	2,851	123.65	3,634	4,602
123.14	3,112	2,882	123.66	3,645	4,639
123.15	3,122	2,913	123.67	3,655	4,675
123.16	3,132	2,944	123.68	3,665	4,712
123.17	3,143	2,976	123.69	3,675	4,748
123.18	3,153	3,007	123.70	3,686	4,785
123.19	3,163	3,039	123.71	3,696	4,822
123.20	3,173	3,070	123.72	3,706	4,859
123.21	3,184	3,102	123.73	3,716	4,896
123.22	3,194	3,134	123.74	3,727	4,933
123.23	3,204	3,166	123.75	3,737	4,971
123.24	3,214	3,198	123.76	3,747	5,008
123.25	3,225	3,230	123.77	3,757	5,046
123.26	3,235	3,263	123.78	3,768	5,083
123.27	3,245	3,295	123.79	3,778	5,121
123.28	3,255	3,328	123.80	3,788	5,159
123.29	3,266	3,360	123.81	3,798	5,197
123.30	3,276	3,393	123.82	3,809	5,235
123.31	3,286	3,426	123.83	3,819	5,273
123.32	3,296	3,459	123.84	3,829	5,311
123.33	3,307	3,492	123.85	3,839	5,350
123.34	3,317	3,525	123.86	3,850	5,388
123.35	3,327	3,558	123.87	3,860	5,427
123.36	3,337	3,591	123.88	3,870	5,465
123.37	3,348	3,625	123.89	3,880	5,504
123.38	3,358	3,658	123.90	3,891	5,543
123.39	3,368	3,692 3,726	123.91	3,901	5,582 5,621
123.40	3,378	3,720 3,759	123.92 123.93	3,911 3,921	
123.41	3,389 3,399	3,793	123.95	3,932	5,660 5,699
123.42 123.43	3,409	3,827	123.94	3,942	5,739
123.43	3,409	3,862	123.95	3,952	5,778
123.45	3,430	3,896	123.90	3,962	5,818
123.46	3,440	3,930	123.98	3,973	5,857
123.47	3,450	3,965	123.99	3,983	5,897
123.48	3,460	3,999	124.00	3,993	5,937
123.49	3,471	4,034	121.00	0,000	0,001
123.50	3,481	4,069			
123.51	3,491	4,103	Elevatio	n 123.50 is th	ne top
123.52	3,501	4,138		n of the overf	
123.53	3,511	4,173			
123.54	3,522	4,209		. Water store	
102 55	ວ່ຣວວ	1 211	l elevatio	n will be infiltr	ated.

Stage-Area-Storage for Pond P-2: Infiltration Basin (continued)

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location:	Village Street Millis, MA			
	В	С	D	E	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
heet	Sediment Forebay	0.25	1.00	0.25	0.75
moval Worksheet	Infiltration Basin	0.80	0.75	0.60	0.15
		0.00	0.15	0.00	0.15
TSS Re Calculation		0.00	0.15	0.00	0.15
Cal		0.00	0.15	0.00	0.15
		Total T	SS Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train
	Proiect:	Millis Well 3 PFAS Treatment Facility			
	Prepared By:			*Equals remaining load fror	n previous BMP (E)
Non-automate	d TSS Calculation Sheet	10/25/2023		which enters the BMP	
must be used	if Proprietary BMP Proposed				

Version 1, Automated: Mar. 4, 2008

1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection

ν

Appendix F Project Data: NOAA Rainfall and NRCS Web Soil Survey

NOAA Atlas 14, Volume 10, Version 3 Location name: Millis, Massachusetts, USA* Latitude: 42.1662°, Longitude: -71.3406° Elevation: 122 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

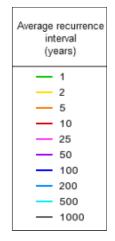
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	based poi	based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration		Average recurrence interval (years)									
Duration	1	2	5	10	10 25		50 100		500	1000	
5-min	0.323 (0.250-0.413)	0.392 (0.303-0.502)	0.505 (0.389-0.649)	0.599 (0.459-0.774)	0.728 (0.541-0.987)	0.825 (0.601-1.14)	0.927 (0.658-1.34)	1.04 (0.701-1.54)	1.21 (0.786-1.86)	1.36 (0.858-2.12	
10-min	0.458 (0.354-0.585)	0.556 (0.429-0.712)	0.716 (0.551-0.920)	0.849 (0.650-1.10)	1.03 (0.767-1.40)	1.17 (0.852-1.62)	1.31 (0.932-1.90)	1.48 (0.993-2.18)	1.72 (1.11-2.63)	1.92 (1.22-3.00)	
15-min	0.539 (0.417-0.689)	0.654 (0.505-0.837)	0.842 (0.649-1.08)	0.999 (0.765-1.29)	1.21 (0.902-1.65)	1.38 (1.00-1.91)	1.54 (1.10-2.23)	1.74 (1.17-2.57)	2.02 (1.31-3.10)	2.26 (1.43-3.53)	
30-min	0.738 (0.571-0.944)	0.898 (0.694-1.15)	1.16 (0.892-1.49)	1.38 (1.06-1.78)	1.67 (1.24-2.27)	1.90 (1.38-2.63)	2.13 (1.51-3.08)	2.40 (1.61-3.55)	2.80 (1.81-4.28)	3.12 (1.98-4.88)	
60-min	0.937 (0.725-1.20)	1.14 (0.882-1.46)	1.48 (1.14-1.90)	1.75 (1.34-2.27)	2.13 (1.59-2.89)	2.42 (1.76-3.36)	2.72 (1.93-3.93)	3.07 (2.06-4.53)	3.57 (2.31-5.47)	3.98 (2.52-6.23)	
2-hr	1.20 (0.931-1.52)	1.47 (1.14-1.87)	1.92 (1.49-2.46)	2.30 (1.77-2.96)	2.82 (2.11-3.81)	3.20 (2.35-4.43)	3.61 (2.59-5.23)	4.11 (2.77-6.03)	4.86 (3.16-7.40)	5.51 (3.50-8.55)	
3-hr	1.38 (1.08-1.75)	1.71 (1.33-2.16)	2.24 (1.74-2.85)	2.68 (2.07-3.42)	3.28 (2.47-4.43)	3.73 (2.75-5.16)	4.22 (3.04-6.09)	4.81 (3.25-7.03)	5.73 (3.72-8.67)	6.52 (4.14-10.1)	
6-hr	1.79 (1.40-2.25)	2.20 (1.72-2.77)	2.87 (2.24-3.62)	3.43 (2.66-4.35)	4.19 (3.17-5.62)	4.76 (3.53-6.54)	5.38 (3.90-7.72)	6.14 (4.16-8.90)	7.31 (4.77-11.0)	8.33 (5.31-12.8)	
12-hr	2.29 (1.81-2.86)	2.79 (2.20-3.49)	3.62 (2.85-4.54)	4.30 (3.37-5.43)	5.25 (3.99-6.97)	5.94 (4.43-8.09)	6.70 (4.88-9.53)	7.62 (5.19-11.0)	9.04 (5.92-13.5)	10.3 (6.56-15.6)	
24-hr	2.76 (2.19-3.42)	3.39 (2.69-4.20)	4.42 (3.50-5.51)	5.28 (4.15-6.61)	6.45 (4.93-8.52)	7.32 (5.49-9.91)	8.27 (6.06-11.7)	9.44 (6.45-13.5)	11.3 (7.39-16.6)	12.8 (8.23-19.3)	
2-day	3.13 (2.50-3.85)	3.91 (3.13-4.82)	5.20 (4.14-6.43)	6.26 (4.96-7.80)	7.73 (5.95-10.2)	8.80 (6.66-11.9)	9.99 (7.39-14.1)	11.5 (7.88-16.3)	13.9 (9.17-20.4)	16.1 (10.3-24.0)	
3-day	3.41 (2.74-4.19)	4.26 (3.42-5.23)	5.64 (4.51-6.96)	6.79 (5.40-8.42)	8.38 (6.47-11.0)	9.53 (7.23-12.8)	10.8 (8.03-15.2)	12.5 (8.55-17.6)	15.1 (9.96-22.1)	17.4 (11.2-25.9)	
4-day	3.68 (2.96-4.50)	4.56 (3.66-5.58)	5.99 (4.80-7.36)	7.18 (5.72-8.87)	8.82 (6.82-11.5)	10.0 (7.61-13.4)	11.3 (8.43-15.9)	13.0 (8.97-18.3)	15.8 (10.4-22.9)	18.2 (11.7-26.9)	
7-day	4.43 (3.58-5.39)	5.35 (4.32-6.52)	6.86 (5.52-8.38)	8.10 (6.48-9.96)	9.82 (7.62-12.7)	11.1 (8.44-14.7)	12.5 (9.26-17.3)	14.2 (9.81-19.8)	17.0 (11.2-24.5)	19.3 (12.5-28.5)	
10-day	5.14 (4.17-6.23)	6.09 (4.93-7.39)	7.63 (6.16-9.30)	8.92 (7.16-10.9)	10.7 (8.31-13.7)	12.0 (9.14-15.8)	13.4 (9.94-18.4)	15.1 (10.5-21.0)	17.8 (11.8-25.6)	20.1 (13.1-29.5)	
20-day	7.23 (5.90-8.71)	8.25 (6.72-9.94)	9.91 (8.05-12.0)	11.3 (9.11-13.7)	13.2 (10.3-16.7)	14.6 (11.1-18.9)	16.1 (11.9-21.6)	17.8 (12.4-24.5)	20.2 (13.5-28.7)	22.1 (14.4-32.2)	
30-day	8.96 (7.34-10.7)	10.0 (8.21-12.0)	11.8 (9.59-14.2)	13.2 (10.7-16.0)	15.2 (11.9-19.1)	16.7 (12.7-21.4)	18.3 (13.4-24.2)	19.9 (13.9-27.2)	22.0 (14.8-31.2)	23.7 (15.5-34.3)	
45-day	11.1 (9.14-13.3)	12.2 (10.0-14.6)	14.1 (11.5-16.9)	15.6 (12.7-18.8)	17.7 (13.8-22.0)	19.3 (14.7-24.5)	20.9 (15.3-27.3)	22.4 (15.7-30.4)	24.3 (16.3-34.2)	25.7 (16.8-37.0)	
60-day	12.9 (10.7-15.4)	14.1 (11.6-16.8)	16.0 (13.1-19.1)	17.5 (14.3-21.1)	19.7 (15.4-24.4)	21.4 (16.3-27.0)	23.0 (16.8-29.8)	24.5 (17.2-33.1)	26.2 (17.6-36.7)	27.3 (17.9-39.2)	


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

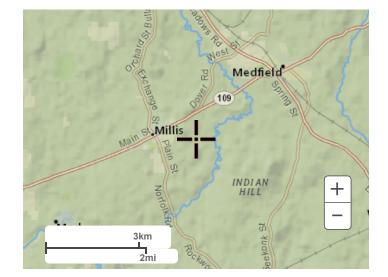
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

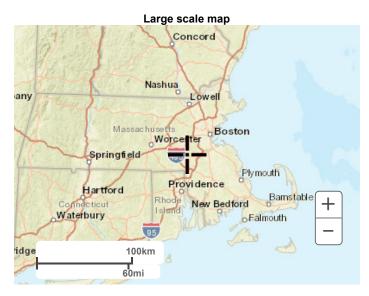
25 Precipitation depth (in) 20 15 10 5 0 5-min 10-min 15-min 30-min 60-min 2-hr 3-hr 0-pr Duration 24-hr 7-day 10-day 30-day 45-day 60-day 2-day 3-day 4-day 20-day 25 Precipitation depth (in) 20 15 10 5 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years)

Duration									
5-min	2-day								
10-min	— 3-day								
15-min	— 4-day								
30-min	- 7-day								
- 60-min	— 10-day								
- 2-hr	— 20-day								
— 3-hr	— 30-day								
— 6-hr	— 45-day								
- 12-hr	- 60-day								
— 24-hr									


NOAA Atlas 14, Volume 10, Version 3

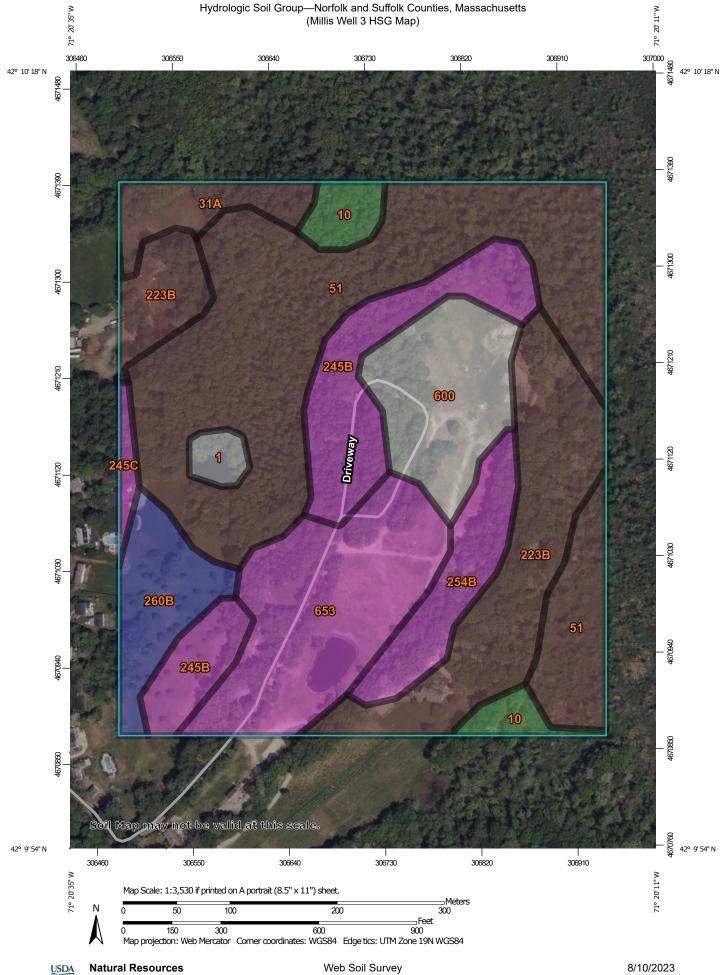
Created (GMT): Thu Aug 10 21:55:19 2023

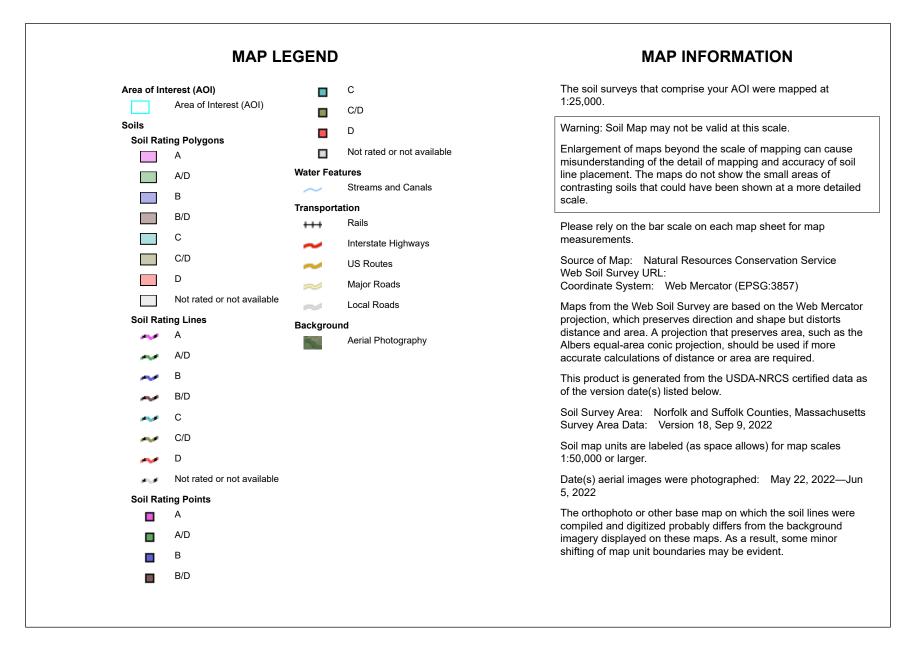
Back to Top


Maps & aerials

Small scale terrain

Large scale terrain


Large scale aerial



Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		0.6	1.1%
10	Scarboro and Birdsall soils, 0 to 3 percent slopes	A/D	1.8	3.0%
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	2.0	3.4%
51	Swansea muck, 0 to 1 percent slopes	B/D	19.0	32.5%
223B	Scio very fine sandy loam, 2 to 5 percent slopes	B/D	9.3	15.9%
245B	Hinckley loamy sand, 3 to 8 percent slopes	A	6.2	10.6%
245C	Hinckley loamy sand, 8 to 15 percent slopes	A	0.5	0.9%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	3.1	5.2%
260B	Sudbury fine sandy loam, 2 to 8 percent slopes	В	3.1	5.3%
600	Pits, sand and gravel		4.9	8.5%
653	Udorthents, sandy	А	8.0	13.7%
Totals for Area of Inter	rest	1	58.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix G Boring Logs

DRILLING METHOD	SAMPLER TYPE GRAPHICS		UNIF	IED S		SSIFIC	ATIO	N SY	STEM ¹
	TRATION SPLIT SPOON SAMPLER uter diameter and 1-3/8 in. (34.9 mm.) inner				CLEAN		~		WELL-GRADED GRAVEL,
diameter)				(e)	GRAVEL		G١	N	WELL-GRADED GRAVEL WITH SAND
GROUND WATER G	RAPHICS			Sieve)	WITH <5%			_	POORLY GRADED GRAVEL,
☑ WATER LEVEL	(level where first observed)			No. 4	FINES	200	G	P	POORLY GRADED GRAVEL WITH SAND
▼ WATER LEVEL	(level after stabilizing period)			N N					WELL-GRADED GRAVEL WITH SILT,
↓ WATER LEVEL	(additional levels after exploration)						GW-	GM	WELL-GRADED GRAVEL WITH SILT, WELL-GRADED GRAVEL WITH SILT AND SAND
OBSERVED SE	EPAGE			retained		57			WELL-GRADED GRAVEL WITH CLAY (OR SILTY
NOTES				tion	GRAVELS WITH		GW-	GC	CLAY), WELL-GRADED GRAVEL WITH CLAY AND SAND (OR SILT CLAY AND SAND)
The report and graphics	key are an integral part of these logs. All dat	ta		coarse fraction	5% TO				SAND (OR SILT CLAT AND SAND)
limitations stated in the rep	og are subject to the explanations and port.			arse	12% FINES	$ \circ 0 $	GP-	GM	POORLY GRADED GRAVEL WITH SILT, POORLY GRADED GRAVEL WITH SILT AND SAND
• Solid lines separating s	trata on the logs represent approximate		_	of co					
	nes are inferred or extrapolated boundaries. gradual or differ from those represented.		eve)	50% 0			GP-	GC	POORLY GRADED GRAVEL WITH CLAY (OR SILTY CLAY), POORLY GRADED GRAVEL WITH CLAY AND
	as to the continuity of soil or rock conditions		200 Sieve)	an 5					(OR SILTY CLAY AND SAND)
between individual sample				re th		609	GI	м	SILTY GRAVEL,
 Logs represent general exploration on the date ind 	soil or rock conditions observed at the point o icated.	of	N N	GRAVELS (More than		Pelp			SILTY GRAVEL WITH SAND
•	Classification System (ASTM D2488/D2487)		o pər	ELS	GRAVELS WITH >		G		CLAYEY GRAVEL,
designations presented on	the logs were based on visual classification in where appropriate based on gradation and	n	etair	AVE	12% FINES		0		CLAYEY GRAVEL WITH SAND
index property testing.	a more appropriate based on graduiter and		0% r	В			~~		SILTY, CLAYEY GRAVEL
• Fine grained soils that p	olot within the hatched area on the Plasticity soils with between 5% and 12% passing the N	No	an 5				GC-	GM	SILTY, CLAYEY GRAVEL WITH SAND
200 sieve require dual US0	Solis with between 5% and 12% passing the P CS symbols, ie., CL-ML, GW-GM, GP-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.	NO.	GRAINED SOILS (More than 50% retained on No.						
			(Mo		CLEAN SANDS		SV	N	WELL-GRADED SAND, WELL-GRADED SAND WITH GRAVEL
number of blows required	be driven at least 6 inches then 50/X indicate to drive the identified sampler X inches with a		ILS	()	WITH				
140 pound hammer falling	30 inches.		0 S O	Sieve)	<5% FINES		SI	P	POORLY GRADED SAND, POORLY GRADED SAND WITH GRAVEL
ABBREVIATIONS WOH - Weight of Hammer			NEC	No. 4	- 1	•_•ागा			
WOR - Weight of Rod REFERENCES			ŝRAI	the N			sw-	SM	WELL-GRADED SAND WITH SILT,
	aterials and Testing (ASTM), 2011, ASTM bils for Engineering Purposes (Unified Soil			es th					WELL-GRADED SAND WITH SILT AND GRAVEL
Classification System).	5 5 1 (-		COARSE	Jassi	SANDS		sw-	5	WELL-GRADED SAND WITH CLAY (OR SILTY CLAY), WELL-GRADED SAND WITH CLAY AND GRAVEL
			ខ	ion	WITH		011-		(OR SILTY CLAY AND GRAVEL)
				coarse fraction passes	5% TO 12% FINES		0.0		POORLY GRADED SAND WITH SILT,
				arse			SP-	51VI	POORLY GRADED SAND WITH SILT AND GRAVEL
				of co:					POORLY GRADED SAND WITH CLAY,
							SP-	sc	POORLY GRADED SAND WITH CLAY AND GRAVEL (OR SILTY CLAY AND GRAVEL)
				or more		Πſ			
				(50% c			SI	N	SILTY SAND, SILTY SAND WITH GRAVEL
				S (5	SANDS				
				SANDS	WITH > 12%		S	c	CLAYEY SAND, CLAYEY SAND WITH GRAVEL
				ŝ	FINES				
							SC-	SM	SILTY, CLAYEY SAND, SILTY, CLAYEY SAND WITH GRAVEL
		l							1
			S				ļļļļļ	ML	SILT, SILT WITH SAND, SILT WITH GRAVEL
			OIL	ve)	SILTS AND			CL	LEAN CLAY, LEAN CLAY WITH SAND, LEAN CLAY WITH GRAVEL
			SOS	e pa: 0 sie	(Liquid L less thar	n 50)		CL-ML	SILTY CLAY, SILTY CLAY WITH SAND, SILTY CLAY WITH GRAVEL
			FINE GRAINED SOILS	#20(E	OL	ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORGANIC CLAY WITH GRAVEL, ORGANIC SILT, ORGANIC SILT WITH SAND, ORGANIC SILT WITH GRAVEL
			GR	Š. Š.				мн	ELASTIC SILT. ELASTIC SILT WITH SAND, ELASTIC SILT WITH GRAVEL
			INE .	the	SILTS AND (Liquid L	imit		СН	FAT CLAY, FAT CLAY WITH SAND, FAT CLAY WITH GRAVEL
			ш		50 or gre	ater)		ОН	ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORGANIC CLAY WITH GRAVEL, ORGANIC SILT, ORGANIC SILT WITH SAND, ORGANIC SILT WITH GRAVEL
								TON	ON THE LOG TO DEFINE A GRAPHIC THAT MAY NOT BE
					ON THIS	LEGEN	ND.		
		PROJE 20233							GRAPHICS KEY
KLE	NFELDER	DRAW	/N BY	' :	AD			1.0.1	
1	ight People. Right Solutions.	CHEC	KED I	BY	MR			vve	Il 3 PFAS Piloting and Preliminary Design 25 Birch Street
		CHECKED BY				Millis, MA			
		DATE:			3/17/2023				

ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized ubbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized avel coarse 3/4 - 3 in. (19 - 76.2 mm.) 3/4 - 3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized fine #4 - 3/4 in. (#4 - 19 mm.) 0.19 - 0.75 in. (4.8 - 19 mm.) Pea-sized to thumb-sized avel coarse #10 - #4 0.079 - 0.19 in. (2 - 4.9 mm.) Rock salt-sized to pea-sized ind medium #40 - #10 0.017 - 0.079 in. (0.43 - 2 mm.) Sugar-sized to sugar-sized fine #200 - #40 0.0029 - 0.017 in. (0.07 - 0.43 mm.) Flour-sized to sugar-sized	ECONDARY C	CONSTITUENT	MOISTURE CONTENT	CEMENTATION
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized ubbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized avel coarse 3/4 - 3 in. (19 - 76.2 mm.) 3/4 - 3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized fine #4 - 3/4 in. (#4 - 19 mm.) 0.19 - 0.75 in. (4.8 - 19 mm.) Pea-sized to thumb-sized coarse #10 - #4 0.079 - 0.19 in. (2 - 4.9 mm.) Rock salt-sized to pea-sized medium #40 - #10 0.017 - 0.079 in. (0.43 - 2 mm.) Sugar-sized to rock salt-sized	Fines Passing #200		<0.0029 in. (<0.07 mm.)	Flour-sized and smaller
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized ubbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized avel coarse 3/4 -3 in. (19 - 76.2 mm.) 3/4 -3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized fine #4 - 3/4 in. (#4 - 19 mm.) 0.19 - 0.75 in. (4.8 - 19 mm.) Pea-sized to thumb-sized coarse #10 - #4 0.079 - 0.19 in. (2 - 4.9 mm.) Rock salt-sized to pea-sized	fine	#200 - #40	0.0029 - 0.017 in. (0.07 - 0.43 mm.)	Flour-sized to sugar-sized
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized ubbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized avel coarse 3/4 - 3 in. (19 - 76.2 mm.) 3/4 - 3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized fine #4 - 3/4 in. (#4 - 19 mm.) 0.19 - 0.75 in. (4.8 - 19 mm.) Pea-sized to thumb-sized	and medium	n #40 - #10	#40 - #10 0.017 - 0.079 in. (0.43 - 2 mm.)	
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized ubbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized udderse 3/4 -3 in. (19 - 76.2 mm.) 3/4 -3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized	coarse	#10 - #4	0.079 - 0.19 in. (2 - 4.9 mm.)	Rock salt-sized to pea-sized
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized bbles 3 - 12 in. (76.2 - 304.8 mm.) 3 - 12 in. (76.2 - 304.8 mm.) Fist-sized to basketball-sized coarse 3/4 - 3 in. (19 - 76.2 mm.) 3/4 - 3 in. (19 - 76.2 mm.) Thumb-sized to fist-sized		#4 - 3/4 in. (#4 - 19 mm.)	0.19 - 0.75 in. (4.8 - 19 mm.)	Pea-sized to thumb-sized
ulders >12 in. (304.8 mm.) >12 in. (304.8 mm.) Larger than basketball-sized		3/4 -3 in. (19 - 76.2 mm.)	3/4 -3 in. (19 - 76.2 mm.)	Thumb-sized to fist-sized
	Cobbles	3 - 12 in. (76.2 - 304.8 mm.)	3 - 12 in. (76.2 - 304.8 mm.)	Fist-sized to basketball-sized
ESCRIPTION SIEVE SIZE GRAIN SIZE APPROXIMATE SIZE	Boulders	>12 in. (304.8 mm.)	>12 in. (304.8 mm.)	Larger than basketball-sized
	DESCRIPTION SIEVE SIZE		GRAIN SIZE	APPROXIMATE SIZE

SECONDARY CONSTITUENT

	AMOUNT									
Term of Use	Secondary Constituent is Fine Grained	Secondary Constituent is Coarse Grained								
Trace	<5%	<15%								
With	≥5 to <15%	≥15 to <30%								
Modifier	≥15%	≥30%								

DESCRIPTION	FIELD TEST	DESCRIPTION	FIELD TEST
Dry	Absence of moisture, dusty, dry to the touch	Weakly	Crumbles or breaks with handling or slight finger pressure
Moist	Damp but no visible water	Moderately	Crumbles or breaks with considerable finger pressure
Wet	Visible free water, usually soil is below water table	Strongly	Will not crumble or break with finger

CONSISTENCY - FINE-GRAINED SOIL

	705		HYDROCHLOR	IC ACID
CONSISTENCY	TCP VALUES	FIELD IDENTIFICATION	DESCRIPTION	FIELD TEST
Very Soft	0 - 8	Core (height twice diameter) sags under own weight	None	No visible reaction
Soft	8 - 20	Core can be pinched or imprinted easilty with finger	Weak	Some reaction, with bubbles
Stiff	20 - 40	Core can be imprinted with considerable pressure	vveak	forming slowly Violent reaction.
Very Stiff	40 - 80	Core can be imprinted only slightly with fingers	Strong	with bubbles forming
Hard	80 - 5 in./100	Core cannot be imprinted with fingers but can be penetrated with pencil		immediately
Very Hard	0 in 5 in. /100	Core cannot be penetrated with pencil		

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

APPARENT DENSITY	TCP VALUES
Very Loose	0 - 8
Loose	8 - 20
Slightly Compact	20 - 40
Compact	40 - 80
Dense	80 - 5 in. /100
Very Dense	0 in. / 5 in. 100

PLASTICITY

LAUTIONT		
DESCRIPTION	LL	FIELD TEST
Non-plastic	NP	A 1/8-in. (3 mm.) thread cannot be rolled at any water content.
Low (L)	< 30	The thread can barely be rolled and the lump or thread cannot be formed when drier than the plastic limit.
Medium (M)	30 - 50	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump or thread crumbles when drier than the plastic limit.
High (H)	> 50	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump or thread can be formed without crumbling when drier than the plastic limit.

STRUCTURE

DESCRIPTION	CRITERIA
Stratified	Alternating layers of varying material or color with layers at least 1/4-in. thick, note thickness.
Laminated	Alternating layers of varying material or color with the layer less than 1/4-in. thick, note thickness.
Fissured	Breaks along definite planes of fracture with little resistance to fracturing.
Slickensided	Fracture planes appear polished or glossy, sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown.
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay; note thickness.

ANGULARITY

DESCRIPTION	CRITERIA
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces.
Subangular	Particles are similar to angular description but have rounded edges.
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges.
Rounded	Particles have smoothly curved sides and no edges.
	, ,

PROJECT NO .: 20233667.001A DRAWN BY: CHECKED BY MR

DATE:

AD

3/17/2023

SOIL DESCRIPTION KEY	
Well 3 PFAS Piloting and Preliminary Design 25 Birch Street Millis, MA	

REACTION WITH

	-	n - E							England Boring Contractors								BORING LOG B-W3-10				
Logged By: HorVert. Datum: Plunge:			A. Darajat Drill Crew: M. Misi							k			L	_							
			0 1 1													Hammer Type - Drop: 140 lb. Auto - 30 in.					
			-90 degre	od:	Drivea	and Was	h with C	asing													
Weat	her:		Cloudy 40				iam	neter: 4 in.	I.D.	1											
				FIELD E	EXPLORATION	N 	1	1					LA	<u> </u>	TOR)	' RESI	JLTS				
Elevation (feet)	Depth (feet)	Graphical Log	Surface Cond	face Elevation (ft.): lition: Bare Earth ar	nd Grass	Sample Number	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks				
Ū,				logic Description			ŝ			്ഗ് റ്	≥ŏ	ā	å	å	Ĕ	đ٤	Å Å				
-125	<u>xxxxx</u>		6" Topsoil Brown, very loose little silt, trace gra			S-1		BC=1 1 1 1	12"												
120		×	Top (A): Brown, fi trace gravel (subs	soil)		S-2A		BC=WOH 1	12"												
	•		Bottom (B): Gray/ SAND, some grav		arse 123.9	S-2B		BC=3 12	8"												
	5-0		Gray/brown, very SAND, some grav	dense, fine to co	arse	S-3		BC=4 20 42 45	17"				77	10			Hard casing penetration fro				
-120		· · · · · · · · · · · · · · · · · · ·	Gray/brown, very and GRAVEL, tra		arse SAND	S-4		BC=30 29 32 40	10"								4.5 to 8 ft bgs. 300 lb hammer was introdu to drive casing.				
Ā			Brown, dense, fin	e to coarse SAN	D and	S-5		BC=16	12"												
	10-	•••• •••• ••••	GRAVEL, trace si		Dana			17 17 17 22													
-115	 15	· · · · · · · · · · · · · · · · · · ·	Brown, dense, GF SAND, little claye		e to coarse	S-6		BC=15 20 18 18	10"				46	12							
-110	-* -* 20-*	· · · · · · · · · · · · · · · · · · ·	Brown/gray, medi SAND and GRAV		o coarse	S-7		BC=8 9 10 13	8"												
-105		· · · · · · · · · · · · · · · · · · ·	Brown, medium d some gravel, trac			S-8		BC=11 10	4"												
ſ					2023	JECT N 3667.0						BC	RIN	G LC)G B	-W3	-101				
	K	L	EINFE Bright People.	LDER Right Solutions		DRAWN BY: AD CHECKED BY: MR					Well 3 PFAS Piloting and Preliminary Design 25 Birch Street Millis, MA										
					DATE	≣:		3/17/2023						IVIIII	э, IVI <i>P</i>	۱ ۱	Page: 1 c				

		gin - I	End:								ng Con	tracto	rs	BORING LOG B-W3-10				
Logged By: HorVert. Datum:			<u>A. Darajat</u> Drill Crew: <u>M. Mis</u> tum: NAD83 - NAVD88 Drilling Equipment: D-53							K								
		τ. Dat	um:	NAD83 - NAVD88			and Wash with Casing						ə - Dr	op: _	140 lb. Auto - 30 in.			
Plur Wea	-			-90 degrees Cloudy 40s		ng Metho ration D		eter: 4 in.		n with C	asing							
					EXPLORAT		an	<u></u>					LA	BORA	TOR	Y RESI	ULTS	
Elevation (feet)	Depth (feet)	Graphical Log		Ground Surface Elevation (ft.): Surface Condition: Bare Earth an	126.90		Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	SS Ibol	Water Content (%)	water Content (%) Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		
Elev	Dept	Grap		Lithologic Description	l	Sample Number	Sam	Blow (Uncor	Recc (NR=	USCS Symbol	Wate Cont	Dry (Pase	Pase	Liqui	Plas (NP=	Addi Rem	
- 100 -		→ → → → → → → → → → → → → → → → → → →	Dr	n modium dance for to		S-8 (cont.)	,	8 15	4" (cont.)									
- 95 -	30-			<i>v</i> n, medium dense, fine to coa GRAVEL, trace silt	rse SAND	S-9		BC=9 8 8 8	6"									
- - 90	35-		-	//brown, medium dense, fine to D, trace gravel, trace silt	o coarse	S-10		BC=8 7 7 9	7"				91	7.6				
- - 85	40-	 		//brown, medium dense, fine to D and GRAVEL, trace silt	o coarse	S-11		BC=7 9 8 6	6"									
- - 80	45-			//brown, medium dense, fine to D and GRAVEL, trace silt	o coarse	S-12		BC=6 5 6 5	5"									
				//brown, medium dense, fine to D and GRAVEL, trace silt	Pf	S-13 ROJECT N 0233667.0		BC=11 10	6"			вс	⁵³ RIN	5.1 G LC) G E	3-W3	-101	
40 40 <td< td=""><td>eet</td><td>inary Design Page: 2</td></td<>							eet	inary Design Page: 2										

Note: Description Description <thdescription< th=""> <thdescription< th=""> <thde< th=""><th>Jarajat</th><th colspan="4">Date Begin - End:</th><th colspan="3">1/26/2023</th><th colspan="3">Drilling Company:</th><th>New</th><th colspan="7">New England Boring Contractors</th><th colspan="4">BORING LOG B-W3-101</th></thde<></thdescription<></thdescription<>	Jarajat	Date Begin - End:				1/26/2023			Drilling Company:			New	New England Boring Contractors							BORING LOG B-W3-101			
Other Verter Lockulth Opcode/ Texture Description Description <thdescription< th=""> Description <thdescriptio< td=""><td>Y: AD</td><td colspan="3">Logged By: A</td><td colspan="3">A. Darajat</td><td colspan="3">Drill Crew:</td><td>M. M</td><td colspan="4">M. Misiaszek</td><td colspan="3"></td><td></td><td></td><td></td></thdescriptio<></thdescription<>	Y: AD	Logged By: A			A. Darajat			Drill Crew:			M. M	M. Misiaszek											
Notes Notes <th< td=""><td>B N</td><td>Hor.</td><td>-Vert</td><td>. Dat</td><td>um:</td><td colspan="3">NAD83 - NAVD88</td><td colspan="3">Drilling Equipment:</td><td>D-53</td><td colspan="4">D-53</td><td colspan="6">Hammer Type - Drop: 140 lb. Auto - 30 in.</td></th<>	B N	Hor.	-Vert	. Dat	um:	NAD83 - NAVD88			Drilling Equipment:			D-53	D-53				Hammer Type - Drop: 140 lb. Auto - 30 in.						
Notes Notes <th< td=""><td>::16 P</td><td>Plur</td><td>nge:</td><td></td><td></td><td>-90 degrees</td><td colspan="3">Drilling Method:</td><td>Drive a</td><td colspan="5">Drive and Wash with Casing</td><td colspan="6"></td></th<>	::16 P	Plur	nge:			-90 degrees	Drilling Method:			Drive a	Drive and Wash with Casing												
Notes Notes <th< td=""><td>23 04</td><td>Wea</td><td>ther:</td><td></td><td></td><td>Cloudy 40s</td><td>;</td><td></td><td>Explorat</td><td>ion Di</td><td>amet</td><td>er: 4 in.</td><td>.D.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	23 04	Wea	ther:			Cloudy 40s	;		Explorat	ion Di	amet	er: 4 in.	.D.										
Notes Notes <th< td=""><td>7/202</td><td></td><td></td><td></td><td></td><td></td><td>FI</td><td>ELD EXPL</td><td>ORATION</td><td>N</td><td></td><td></td><td></td><td colspan="8">LABORATORY RESULTS</td><td></td></th<>	7/202						FI	ELD EXPL	ORATION	N				LABORATORY RESULTS									
Image: State in the locity of the locity	PLOTTED: 03/1	vation (feet)	pth (feet)	aphical Log						mple mber	mple Type	v Counts(BC)= orr. Blows/6 in.	covery R=No Recovery)	CS mbol	ater ntent (%)	/ Unit Wt. (pcf)	ssing #4 (%)	ssing #200 (%)	luid Limit	asticity Index >=NonPlastic)	ditional Tests/ marks		
1 read 75 The boring was terminated at approximately 25. The boring was terminated at approximately 25. The boring was terminated at approximately 25. 2023. The boring was terminated at approximately 25. 2023. The boring was terminated at approximately 25. The boring was terminated at approximately 25. 2023. The boring was terminated at approximately 25. The boring was terminated at approximately 25. The boring was terminated at approximately 25. 2023. The boring was terminated at approximately 25. The boring was terminat		Ше	De	Gra	Lithologic Description						Sal		6"	US Syr	Cor	Dry	Pas	Pas	Liq	Pla (NF	A d Re		
73 The boring was terminated at approximately, 51t. below grand surface. The boring was backfield with dill cuttings on January 26, 2023. Cound Wattree Level INCOMATION: 20 Grandwattree was backfield. Well 3 lieb grandwattree was backfield. We				· · · · ·																			
P00 P00 P01 P01		-	-	<u>••••</u> 1				75.9	(00/10)			(00/10)											
		75 	- - 55—	51 ft. below ground surface. The boring w backfilled with drill cuttings on January 26,					g was	 ✓ Groundwater was observed at approximately 8.5 ft. bel ground surface during drilling. GENERAL NOTES: 1. Ground Surface Elevation based on drawing titled "V plan" prepared by Kleinfelder, dated October 2022. 2. Where strata breaks are not observed in the split sp samples, strata breaks are inferred based on observat rig behavior (rig bouncing and chattering), change in auger/rollerbit penetration resistance, drill cuttings and 										mately 8.5 ft. below drawing titled "Well totober 2022. ed in the split spoon ised on observation o ng), change in	f drill		
		Γ	-																				
		-70	_																				
		-	_																				
		-	-																				
BROJECT NUMBER: 20234667 001A		-	60-																				
BROJECT NUMBER: 20234667 001A	R: BOSTON	Ļ	_																				
BROJECT NUMBER: 20234667 001A																							
BROJECT NUMBER: 20234667 001A		-65	-																				
BROJECT NUMBER: 20234667 001A		-	-																				
		-	_																				
	LOG	-	65—																				
	SOIL	-	_																				
	T PIT	-60	-																				
	001A S/TES																						
	3667. DRING	-	-																				
	2023 _F_B(-	-																				
	BER: KI	ŀ	70																				
	GLB																						
	JECT 2023.4	Γ	-																				
PROJECT NO.: 20233667.001A DRAWN BY: AD CHECKED BY: MR DATE: 3/17/2023 BORING LOG B-W3-101 Well 3 PFAS Piloting and Preliminary Design 25 Birch Street Millis, MA	ARY_	-55	-																				
PROJECT NO.: 20233667.001A DRAWN BY: AD CHECKED BY: MR DATE: 3/17/2023 DRAWN BY: 3.0f 3	LIBR	ŀ	_																				
PROJECT NO.: 20233667.001A DRAWN BY: AD CHECKED BY: MR DATE: 3/17/2023 Bright People. Right Solutions.	LNIC																						
PROJECT NO.: 20233667.001A BORING LOG B-W3-101 20233667.001A DRAWN BY: AD Bright People. Right Solutions. CHECKED BY: MR DATE: 3/17/2023 Page: 3 of 3	RD_(Γ	-																				
Image: Strategy of the second seco	aster_2023 .F_STANDA															ВО	RIN	GLC)G E	8-W3	-101		
Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD Image: String to People. Right Solutions. DRAWN BY: AD	E:KL	/	-			• • 																	
Image: Page: 3 of 3 Millis, MA DATE: 3/17/2023	LE: KIf_gi :MPLATE:		K												Well	3 PFA		5 Birc	h Str	reet	inary Design		
	INT FI NT TE			-					DATE	≣:	3	/17/2023						Millis	s, MA	4	Page	:3 of 3	